Page 1
Edurev123
2. Equation of 1st Order and 1st Degree
2.1 Solve :
????
????
=
?? ?? (?? -?? )
?? ?? ?? ?? -?? ?? ?? -?? ?? ?? ,?? (?? )=??
(2009 : 20 Marks)
Solution:
Approach : We check for exactness and find it to be so.
????
????
=
?? 2
(?? -?? )
3?? ?? 2
-?? 2
?? -4?? 3
??? 2
(?? -?? )???? +(3?? ?? 2
-?? 2
?? -4?? 3
)???? =0
Comparing to ?????? +?????? =0
?? =?? 2
(?? -?? )
?? =3?? ?? 2
-?? 2
?? -4?? 3
??? ??? =3?? 2
-2????
??? ??? =3?? 2
-2????
?
??? ??? =
??? ??? , so the equation is exact.
Solution of an exact equation :
??? (treating ?? as constant) ???? +??? ( terms not containing ?? )???? =??
? ?? 2
(?? -?? )???? +? -4?? 3
???? =0
? ?? 3
?? -
?? 2
?? 2
2
-?? 4
=0
?? (0) =1??? =-1
? ?? 3
?? -
?? 2
?? 2
2
-?? 4
+1 =0 is the final solution.
2.2 Consider the differential equation.
where ?? is a constant. Show that
Page 2
Edurev123
2. Equation of 1st Order and 1st Degree
2.1 Solve :
????
????
=
?? ?? (?? -?? )
?? ?? ?? ?? -?? ?? ?? -?? ?? ?? ,?? (?? )=??
(2009 : 20 Marks)
Solution:
Approach : We check for exactness and find it to be so.
????
????
=
?? 2
(?? -?? )
3?? ?? 2
-?? 2
?? -4?? 3
??? 2
(?? -?? )???? +(3?? ?? 2
-?? 2
?? -4?? 3
)???? =0
Comparing to ?????? +?????? =0
?? =?? 2
(?? -?? )
?? =3?? ?? 2
-?? 2
?? -4?? 3
??? ??? =3?? 2
-2????
??? ??? =3?? 2
-2????
?
??? ??? =
??? ??? , so the equation is exact.
Solution of an exact equation :
??? (treating ?? as constant) ???? +??? ( terms not containing ?? )???? =??
? ?? 2
(?? -?? )???? +? -4?? 3
???? =0
? ?? 3
?? -
?? 2
?? 2
2
-?? 4
=0
?? (0) =1??? =-1
? ?? 3
?? -
?? 2
?? 2
2
-?? 4
+1 =0 is the final solution.
2.2 Consider the differential equation.
where ?? is a constant. Show that
?? '
=???? ,?? >??
(i) if ?? (?? ) is any solution and ?? (?? )=?? (?? )?? -????
, then ?? (?? ) is a constant.
(ii) if ?? <?? , then every solution tends to zero as ?? ?8.
(2010: 12 Marks).
Solution:
(i) Given, the differential equation is :
?? '
=????
?
????
????
=???? ?
????
????
-???? =0
Integrating factor ?? ? -?????? =?? -????
? Solution of equation is ?? ·?? -????
=? 0???? + Constant
? ?? ·?? -????
= Constant
Comparing above equation with
?? (?? ) =?? (?? )·?? -????
It can be concluded that ?? (?? )= Constant
(ii) Let ?? be the constant.
So, the solution is ?? =?? ·?? ????
? if ?? <0 and ?? ?8
?? ????
?0
? ?? ?0
? Every solution tends to zero as ?? ?8 when ?? <0.
2.3 Show that the differential equation
(?? ?? ?? -?? )+?? ?? (?? ?? -?? ?? )?? =??
admits an integrating factor which is a function of (?? +?? ?? ) . Hence, solve the
equation.
(2010 : 12 Marks)
Page 3
Edurev123
2. Equation of 1st Order and 1st Degree
2.1 Solve :
????
????
=
?? ?? (?? -?? )
?? ?? ?? ?? -?? ?? ?? -?? ?? ?? ,?? (?? )=??
(2009 : 20 Marks)
Solution:
Approach : We check for exactness and find it to be so.
????
????
=
?? 2
(?? -?? )
3?? ?? 2
-?? 2
?? -4?? 3
??? 2
(?? -?? )???? +(3?? ?? 2
-?? 2
?? -4?? 3
)???? =0
Comparing to ?????? +?????? =0
?? =?? 2
(?? -?? )
?? =3?? ?? 2
-?? 2
?? -4?? 3
??? ??? =3?? 2
-2????
??? ??? =3?? 2
-2????
?
??? ??? =
??? ??? , so the equation is exact.
Solution of an exact equation :
??? (treating ?? as constant) ???? +??? ( terms not containing ?? )???? =??
? ?? 2
(?? -?? )???? +? -4?? 3
???? =0
? ?? 3
?? -
?? 2
?? 2
2
-?? 4
=0
?? (0) =1??? =-1
? ?? 3
?? -
?? 2
?? 2
2
-?? 4
+1 =0 is the final solution.
2.2 Consider the differential equation.
where ?? is a constant. Show that
?? '
=???? ,?? >??
(i) if ?? (?? ) is any solution and ?? (?? )=?? (?? )?? -????
, then ?? (?? ) is a constant.
(ii) if ?? <?? , then every solution tends to zero as ?? ?8.
(2010: 12 Marks).
Solution:
(i) Given, the differential equation is :
?? '
=????
?
????
????
=???? ?
????
????
-???? =0
Integrating factor ?? ? -?????? =?? -????
? Solution of equation is ?? ·?? -????
=? 0???? + Constant
? ?? ·?? -????
= Constant
Comparing above equation with
?? (?? ) =?? (?? )·?? -????
It can be concluded that ?? (?? )= Constant
(ii) Let ?? be the constant.
So, the solution is ?? =?? ·?? ????
? if ?? <0 and ?? ?8
?? ????
?0
? ?? ?0
? Every solution tends to zero as ?? ?8 when ?? <0.
2.3 Show that the differential equation
(?? ?? ?? -?? )+?? ?? (?? ?? -?? ?? )?? =??
admits an integrating factor which is a function of (?? +?? ?? ) . Hence, solve the
equation.
(2010 : 12 Marks)
Solution:
Given the equation is
(3?? 2
-?? )+2?? (?? 2
-3?? )?? =0
or (3?? 2
-?? )???? +2?? (?? 2
-3?? )???? =0
?????? ,?????? ?? =?? +?? 2
?? 2
=?? -?? and 2?????? =???? -????
? Equation becomes (3(?? -?? )-?? )???? +(?? -?? -3?? )×(???? -???? )=0
? (3?? -4?? )???? +(?? -4?? )(???? -???? )=0
? 3?????? -4?????? +?????? -4?????? -?????? +4?????? =0
? 2?????? +(?? -4?? )???? =0
Now, if integrating factor is a function of ?? +?? 2
, then equation becomes
2???? (?? )???? +(?? -4?? )?? (?? )???? =0
? 2???? (?? )???? +(?? -4?? )?? (?? )???? =
??? ??? ???? +
??? ??? ???? =????
Comparing LHS & RHS, we get
and
??? ??? =2???? (?? )?
?
2
?? ??? ??? =2?? (?? )+2?? ??? ???
and
??? ??? =(?? -4?? )?? (?? )?
??? ??? ??? =-4?? (?? )
? 2?? (?? )+2?? ??? ??? =-4?? (?? )
? 6?? (?? )+2?? ??? ??? =0
? ?? ??? ??? =-3?? ? -3
??? ?? =
??? ??
Integrating both sides, we get
?? (?? )=
?? ?? 3
=
?? (?? +?? 2
)
3
where ?? is a constant.
Page 4
Edurev123
2. Equation of 1st Order and 1st Degree
2.1 Solve :
????
????
=
?? ?? (?? -?? )
?? ?? ?? ?? -?? ?? ?? -?? ?? ?? ,?? (?? )=??
(2009 : 20 Marks)
Solution:
Approach : We check for exactness and find it to be so.
????
????
=
?? 2
(?? -?? )
3?? ?? 2
-?? 2
?? -4?? 3
??? 2
(?? -?? )???? +(3?? ?? 2
-?? 2
?? -4?? 3
)???? =0
Comparing to ?????? +?????? =0
?? =?? 2
(?? -?? )
?? =3?? ?? 2
-?? 2
?? -4?? 3
??? ??? =3?? 2
-2????
??? ??? =3?? 2
-2????
?
??? ??? =
??? ??? , so the equation is exact.
Solution of an exact equation :
??? (treating ?? as constant) ???? +??? ( terms not containing ?? )???? =??
? ?? 2
(?? -?? )???? +? -4?? 3
???? =0
? ?? 3
?? -
?? 2
?? 2
2
-?? 4
=0
?? (0) =1??? =-1
? ?? 3
?? -
?? 2
?? 2
2
-?? 4
+1 =0 is the final solution.
2.2 Consider the differential equation.
where ?? is a constant. Show that
?? '
=???? ,?? >??
(i) if ?? (?? ) is any solution and ?? (?? )=?? (?? )?? -????
, then ?? (?? ) is a constant.
(ii) if ?? <?? , then every solution tends to zero as ?? ?8.
(2010: 12 Marks).
Solution:
(i) Given, the differential equation is :
?? '
=????
?
????
????
=???? ?
????
????
-???? =0
Integrating factor ?? ? -?????? =?? -????
? Solution of equation is ?? ·?? -????
=? 0???? + Constant
? ?? ·?? -????
= Constant
Comparing above equation with
?? (?? ) =?? (?? )·?? -????
It can be concluded that ?? (?? )= Constant
(ii) Let ?? be the constant.
So, the solution is ?? =?? ·?? ????
? if ?? <0 and ?? ?8
?? ????
?0
? ?? ?0
? Every solution tends to zero as ?? ?8 when ?? <0.
2.3 Show that the differential equation
(?? ?? ?? -?? )+?? ?? (?? ?? -?? ?? )?? =??
admits an integrating factor which is a function of (?? +?? ?? ) . Hence, solve the
equation.
(2010 : 12 Marks)
Solution:
Given the equation is
(3?? 2
-?? )+2?? (?? 2
-3?? )?? =0
or (3?? 2
-?? )???? +2?? (?? 2
-3?? )???? =0
?????? ,?????? ?? =?? +?? 2
?? 2
=?? -?? and 2?????? =???? -????
? Equation becomes (3(?? -?? )-?? )???? +(?? -?? -3?? )×(???? -???? )=0
? (3?? -4?? )???? +(?? -4?? )(???? -???? )=0
? 3?????? -4?????? +?????? -4?????? -?????? +4?????? =0
? 2?????? +(?? -4?? )???? =0
Now, if integrating factor is a function of ?? +?? 2
, then equation becomes
2???? (?? )???? +(?? -4?? )?? (?? )???? =0
? 2???? (?? )???? +(?? -4?? )?? (?? )???? =
??? ??? ???? +
??? ??? ???? =????
Comparing LHS & RHS, we get
and
??? ??? =2???? (?? )?
?
2
?? ??? ??? =2?? (?? )+2?? ??? ???
and
??? ??? =(?? -4?? )?? (?? )?
??? ??? ??? =-4?? (?? )
? 2?? (?? )+2?? ??? ??? =-4?? (?? )
? 6?? (?? )+2?? ??? ??? =0
? ?? ??? ??? =-3?? ? -3
??? ?? =
??? ??
Integrating both sides, we get
?? (?? )=
?? ?? 3
=
?? (?? +?? 2
)
3
where ?? is a constant.
? integrating factor is
?? (?? +?? 2
)=
1
(?? +?? 2
)
3
Multiplying eqn, by
1
?? 3
, we get
2?? ?? 3
???? +(?? -4?? )
????
?? 3
=0
? ?? (
2?? -?? ?? 2
) =0
?
2?? -?? ?? 2
=?? , where ?? is a constant.
? Solution of equation is
? 2?? -?? -?? ?? 2
=0
? 2?? -(?? +?? 2
)-?? (?? +?? 2
)
2
=0
? ?? -?? 2
-?? (?? +?? 2
)
2
=0, where ?? is a constant, is the required solution of the
equation.
2.4 Verify that:
?? ?? (???? +???? )?? (??????
?? ???? )+
?? ?? (???? -???? )?? (??????
??
?? ?? )=?????? +??????
Hence show that:
(i) if the differential equation ?????? +?????? =?? is homogenous then (???? +???? )
-?? is
an integrating factor unless ?? ?? +???? =?? .
(ii) if the differential equation ?????? +?????? =?? is not exact but is of the form
?? ?? (?? ,?? )?????? +?? ?? (?? ,?? )?????? =??
then (???? -???? )
-?? is an integrating factor unless ???? -???? =?? .
Solution:
Given:
1
2
(???? +???? )?? (log
?? ?? ?? )+
1
2
(???? -???? )?? (log
??
?? ?? )=?????? +??????
Taking LHS :
Page 5
Edurev123
2. Equation of 1st Order and 1st Degree
2.1 Solve :
????
????
=
?? ?? (?? -?? )
?? ?? ?? ?? -?? ?? ?? -?? ?? ?? ,?? (?? )=??
(2009 : 20 Marks)
Solution:
Approach : We check for exactness and find it to be so.
????
????
=
?? 2
(?? -?? )
3?? ?? 2
-?? 2
?? -4?? 3
??? 2
(?? -?? )???? +(3?? ?? 2
-?? 2
?? -4?? 3
)???? =0
Comparing to ?????? +?????? =0
?? =?? 2
(?? -?? )
?? =3?? ?? 2
-?? 2
?? -4?? 3
??? ??? =3?? 2
-2????
??? ??? =3?? 2
-2????
?
??? ??? =
??? ??? , so the equation is exact.
Solution of an exact equation :
??? (treating ?? as constant) ???? +??? ( terms not containing ?? )???? =??
? ?? 2
(?? -?? )???? +? -4?? 3
???? =0
? ?? 3
?? -
?? 2
?? 2
2
-?? 4
=0
?? (0) =1??? =-1
? ?? 3
?? -
?? 2
?? 2
2
-?? 4
+1 =0 is the final solution.
2.2 Consider the differential equation.
where ?? is a constant. Show that
?? '
=???? ,?? >??
(i) if ?? (?? ) is any solution and ?? (?? )=?? (?? )?? -????
, then ?? (?? ) is a constant.
(ii) if ?? <?? , then every solution tends to zero as ?? ?8.
(2010: 12 Marks).
Solution:
(i) Given, the differential equation is :
?? '
=????
?
????
????
=???? ?
????
????
-???? =0
Integrating factor ?? ? -?????? =?? -????
? Solution of equation is ?? ·?? -????
=? 0???? + Constant
? ?? ·?? -????
= Constant
Comparing above equation with
?? (?? ) =?? (?? )·?? -????
It can be concluded that ?? (?? )= Constant
(ii) Let ?? be the constant.
So, the solution is ?? =?? ·?? ????
? if ?? <0 and ?? ?8
?? ????
?0
? ?? ?0
? Every solution tends to zero as ?? ?8 when ?? <0.
2.3 Show that the differential equation
(?? ?? ?? -?? )+?? ?? (?? ?? -?? ?? )?? =??
admits an integrating factor which is a function of (?? +?? ?? ) . Hence, solve the
equation.
(2010 : 12 Marks)
Solution:
Given the equation is
(3?? 2
-?? )+2?? (?? 2
-3?? )?? =0
or (3?? 2
-?? )???? +2?? (?? 2
-3?? )???? =0
?????? ,?????? ?? =?? +?? 2
?? 2
=?? -?? and 2?????? =???? -????
? Equation becomes (3(?? -?? )-?? )???? +(?? -?? -3?? )×(???? -???? )=0
? (3?? -4?? )???? +(?? -4?? )(???? -???? )=0
? 3?????? -4?????? +?????? -4?????? -?????? +4?????? =0
? 2?????? +(?? -4?? )???? =0
Now, if integrating factor is a function of ?? +?? 2
, then equation becomes
2???? (?? )???? +(?? -4?? )?? (?? )???? =0
? 2???? (?? )???? +(?? -4?? )?? (?? )???? =
??? ??? ???? +
??? ??? ???? =????
Comparing LHS & RHS, we get
and
??? ??? =2???? (?? )?
?
2
?? ??? ??? =2?? (?? )+2?? ??? ???
and
??? ??? =(?? -4?? )?? (?? )?
??? ??? ??? =-4?? (?? )
? 2?? (?? )+2?? ??? ??? =-4?? (?? )
? 6?? (?? )+2?? ??? ??? =0
? ?? ??? ??? =-3?? ? -3
??? ?? =
??? ??
Integrating both sides, we get
?? (?? )=
?? ?? 3
=
?? (?? +?? 2
)
3
where ?? is a constant.
? integrating factor is
?? (?? +?? 2
)=
1
(?? +?? 2
)
3
Multiplying eqn, by
1
?? 3
, we get
2?? ?? 3
???? +(?? -4?? )
????
?? 3
=0
? ?? (
2?? -?? ?? 2
) =0
?
2?? -?? ?? 2
=?? , where ?? is a constant.
? Solution of equation is
? 2?? -?? -?? ?? 2
=0
? 2?? -(?? +?? 2
)-?? (?? +?? 2
)
2
=0
? ?? -?? 2
-?? (?? +?? 2
)
2
=0, where ?? is a constant, is the required solution of the
equation.
2.4 Verify that:
?? ?? (???? +???? )?? (??????
?? ???? )+
?? ?? (???? -???? )?? (??????
??
?? ?? )=?????? +??????
Hence show that:
(i) if the differential equation ?????? +?????? =?? is homogenous then (???? +???? )
-?? is
an integrating factor unless ?? ?? +???? =?? .
(ii) if the differential equation ?????? +?????? =?? is not exact but is of the form
?? ?? (?? ,?? )?????? +?? ?? (?? ,?? )?????? =??
then (???? -???? )
-?? is an integrating factor unless ???? -???? =?? .
Solution:
Given:
1
2
(???? +???? )?? (log
?? ?? ?? )+
1
2
(???? -???? )?? (log
??
?? ?? )=?????? +??????
Taking LHS :
1
2
(???? +???? )×
1
????
(?????? +?????? )+
1
2
(???? -???? )×
?? ?? ×
(?????? -?????? )
?? 2
=
1
2
[(???? +???? )(
????
?? +
????
?? )+(???? -???? )(
????
?? -
????
?? )] (1)
=
1
2
????
?? ?? ?? +
1
2
????
????
?? +
????
2
????
?? +
????
2
????
?? +
1
2
????
????
?? +
1
2
????
????
?? -
????
2
????
?? -
????
2
????
?? =?????? + Ndy = RHS
Hence, given equation is verified.
(i) Lot ?????? +?????? =0 be a homogeneous equation.
? ?????? +?????? =
1
2
[(???? +???? )(
????
?? +
????
?? )+(???? -???? )(
????
?? -
????
?? )] ???????? (1)
If
1
???? +????
is an integrating factor, then equation becomes
?????? +??????
???? +????
=
1
2
[
?????? +?????? ????
+
???? -????
???? +????
×
(?????? -?????? )
????
]
?
?????? +??????
???? +????
=
1
2
(?? log
?? (???? )+?? (
?? ?? )?? log
?? (
?? ?? ))
where ?? (
?? ?? )=
?? -?? (
?? ?? )
?? +?? (
?? ?? )
?
?? ???? +??????
???? +????
=
1
2
(?? (log
?? ???? )+?? (?? log
?? (
?? ?? )
)?? (log
??
?? ?? ))
?
?????? +??????
???? +????
=
1
2
(?? (log
?? ???? )+?? (log
??
?? ?? )?? (log
?? ?? ))
which is an exact differential.
?
1
???? +????
is an integraing factor un less ???? +?????? ?0.
(ii) Rewriting ?????? +?????? as
?????? +?????? =
1
2
[(???? +???? )(
????
?? +
????
?? )+(???? -???? )(
????
?? -
????
?? )] ???????? (1)
if (???? -???? )
-1
is an integrating factor, then equation heromes
Read More