Page 1
Edurev123
3. Equation of 1st Order but Nor of 1st
Degree
3.1. Obtain Clairaut's form of the differential equation
(?? ?? ?? ????
-?? )(?? ????
????
+?? )=?? ?? ????
????
Also find its general solution.
(2011 : 15 Marks)
Solution:
The given differential equation is
(?? ????
????
-?? )(?? ????
????
+?? )=?? 2
????
????
Put
????
????
=?? ,?? 2
=?? ,?? 2
=?? ? ??????? =???? ,??????? =????
?
????
????
=
2?????? 2?????? ??? =
?? ?? ?? ,?? =
????
????
? from (i), (?? ·
?? ?? ?? -?? )(?? ·
?? ?? ?? +?? )=?? 2
?? ?? ?? ? (
?? ?? 2-?? 2
?? )-?? (?? +1)=?? 2
?? ?? ?? ? ???? -?? =
?? 2
?? ?? +1
? ?? =???? -
?? 2
?? ?? +1
? ?? =???? +?? (?? ) which is Clairaut's form.
? Its general solution is
?? =???? +?? (?? ) where ?? is an arbitrary constant
? ?? 2
=?? ?? 2
+?? (?? )
3.2 Solve the DE: ?? =???? -?? ?? where ?? =
????
????
.
(2015 : 13 Marks)
Solution:
Page 2
Edurev123
3. Equation of 1st Order but Nor of 1st
Degree
3.1. Obtain Clairaut's form of the differential equation
(?? ?? ?? ????
-?? )(?? ????
????
+?? )=?? ?? ????
????
Also find its general solution.
(2011 : 15 Marks)
Solution:
The given differential equation is
(?? ????
????
-?? )(?? ????
????
+?? )=?? 2
????
????
Put
????
????
=?? ,?? 2
=?? ,?? 2
=?? ? ??????? =???? ,??????? =????
?
????
????
=
2?????? 2?????? ??? =
?? ?? ?? ,?? =
????
????
? from (i), (?? ·
?? ?? ?? -?? )(?? ·
?? ?? ?? +?? )=?? 2
?? ?? ?? ? (
?? ?? 2-?? 2
?? )-?? (?? +1)=?? 2
?? ?? ?? ? ???? -?? =
?? 2
?? ?? +1
? ?? =???? -
?? 2
?? ?? +1
? ?? =???? +?? (?? ) which is Clairaut's form.
? Its general solution is
?? =???? +?? (?? ) where ?? is an arbitrary constant
? ?? 2
=?? ?? 2
+?? (?? )
3.2 Solve the DE: ?? =???? -?? ?? where ?? =
????
????
.
(2015 : 13 Marks)
Solution:
Differentiate w.r.t. ??
1
?? =?? +?? ????
????
-2?? ????
????
? 1-?? 2
=(?? 1-2?? 2
)
????
????
? (???? -2?? 2
)???? +(?? 2
-1)???? =0 (?????? +?????? =0)
??? ??? =?? ,
??? ??? =2??
1
?? (
??? ??? -
??? ??? )=
-?? ?? 2
-1
I.F. =?? ?
-?? ?? 2
-1
????
=?? -
1
2
log (?? 2
-1)
=
1
v?? 2
-1
D.E. =(
????
v?? 2
-1
-
2?? 2
v?? 2
-1
)???? +(v?? 2
-1)???? =0
?
????
v?? 2
-1
-
2?? 2
v?? 2
-1
= constant
? 2v?? 2
-1-2? ?? ·
?? v?? 2
-1
=?? 1
??? v?? 2
-1-2?? ?
?? v?? 2
-1
+2?
?? v?? 2
-1
=?? ?? ? ?? v?? 2
-1-2?? v?? 2
-1+2? v?? 2
-1=?? 1
??? v?? 2
-1-2?? v?? 2
-1+?? v?? 2
-1-log|(?? +v?? 2
-1|=?? 1
? ?? =?? +
log |?? +v?? 2
-1|+?? 1
v?? 2
-1
?? =???? -?? 2
=?? [log |?? +v?? 2
-1|+?? ]
v?? 2
-1
3.3 Solve the following simultaneous linear ???? (?? +?? )?? =?? +?? ?? and (?? +?? )?? =?? +
?? ?? where ?? and ?? are functions of independent variable ?? and ?? =
?? ????
.
(2017 : 8 Marks)
Solution:
(?? +1)?? =?? +?? ?? (??)
(?? +1)?? =?? +?? ?? (???? )
Applying (?? +1) operator to (i)
(?? +1)
2
?? =(?? +1)?? +(?? +1)?? ??
Page 3
Edurev123
3. Equation of 1st Order but Nor of 1st
Degree
3.1. Obtain Clairaut's form of the differential equation
(?? ?? ?? ????
-?? )(?? ????
????
+?? )=?? ?? ????
????
Also find its general solution.
(2011 : 15 Marks)
Solution:
The given differential equation is
(?? ????
????
-?? )(?? ????
????
+?? )=?? 2
????
????
Put
????
????
=?? ,?? 2
=?? ,?? 2
=?? ? ??????? =???? ,??????? =????
?
????
????
=
2?????? 2?????? ??? =
?? ?? ?? ,?? =
????
????
? from (i), (?? ·
?? ?? ?? -?? )(?? ·
?? ?? ?? +?? )=?? 2
?? ?? ?? ? (
?? ?? 2-?? 2
?? )-?? (?? +1)=?? 2
?? ?? ?? ? ???? -?? =
?? 2
?? ?? +1
? ?? =???? -
?? 2
?? ?? +1
? ?? =???? +?? (?? ) which is Clairaut's form.
? Its general solution is
?? =???? +?? (?? ) where ?? is an arbitrary constant
? ?? 2
=?? ?? 2
+?? (?? )
3.2 Solve the DE: ?? =???? -?? ?? where ?? =
????
????
.
(2015 : 13 Marks)
Solution:
Differentiate w.r.t. ??
1
?? =?? +?? ????
????
-2?? ????
????
? 1-?? 2
=(?? 1-2?? 2
)
????
????
? (???? -2?? 2
)???? +(?? 2
-1)???? =0 (?????? +?????? =0)
??? ??? =?? ,
??? ??? =2??
1
?? (
??? ??? -
??? ??? )=
-?? ?? 2
-1
I.F. =?? ?
-?? ?? 2
-1
????
=?? -
1
2
log (?? 2
-1)
=
1
v?? 2
-1
D.E. =(
????
v?? 2
-1
-
2?? 2
v?? 2
-1
)???? +(v?? 2
-1)???? =0
?
????
v?? 2
-1
-
2?? 2
v?? 2
-1
= constant
? 2v?? 2
-1-2? ?? ·
?? v?? 2
-1
=?? 1
??? v?? 2
-1-2?? ?
?? v?? 2
-1
+2?
?? v?? 2
-1
=?? ?? ? ?? v?? 2
-1-2?? v?? 2
-1+2? v?? 2
-1=?? 1
??? v?? 2
-1-2?? v?? 2
-1+?? v?? 2
-1-log|(?? +v?? 2
-1|=?? 1
? ?? =?? +
log |?? +v?? 2
-1|+?? 1
v?? 2
-1
?? =???? -?? 2
=?? [log |?? +v?? 2
-1|+?? ]
v?? 2
-1
3.3 Solve the following simultaneous linear ???? (?? +?? )?? =?? +?? ?? and (?? +?? )?? =?? +
?? ?? where ?? and ?? are functions of independent variable ?? and ?? =
?? ????
.
(2017 : 8 Marks)
Solution:
(?? +1)?? =?? +?? ?? (??)
(?? +1)?? =?? +?? ?? (???? )
Applying (?? +1) operator to (i)
(?? +1)
2
?? =(?? +1)?? +(?? +1)?? ??
(?? 2
+2?? +1)?? =?? +?? ?? +2?? ?? (?? 2
+2?? )?? =0?? ??
Solution to homogeneous equation
(?? 2
+2?? )?? =0, i.e., ?? (?? +2)?? =0 is
?? ?? =?? 1
+?? 2
?? -2??
Particular integral,
???? =
1
?? (?? +2)
(3?? ?? )=
3
1(1+2)
·?? ?? =?? ??
? ?? =?? 1
+?? 2
?? -2?? +?? ??
From (1)
?? =(?? +1)?? -?? ?? =-2?? 2
?? -2?? +?? ?? +?? 1
+?? 2
?? -2?? ?? =?? 1
-?? 2
?? -2?? +?? ??
3.4 Consider the ???? ,???? ?? ?? -(?? ?? +?? ?? -?? )?? +???? =?? where ?? =
????
????
. Substituting ?? =
?? ?? and ?? =?? ?? reduce the equation to Clairaut's form in terms of ?? ,?? and ?? '
=
????
????
.
Hence or otherwise solve the equation.
(20i7 : 8 Marks)
Solution:
???? ?? 2
-(?? 2
+?? 2
-1)?? +???? =0
?? =?? 2
? ???? =2?????? ?? =?? 2
????? =2?????? ?
????
????
=
?? ?? ????
????
i.e., ?? '
=
?? ?? ?? or ?? =
?? ?? ?? '
(??)
Substituting in (i),
???? ·
?? 2
?? 2
·?? 2
-(?? +?? -1)
?? ?? ?? '
+???? =0
? ?? 2
·?? 2
-(?? +?? -1)?? '
+?? 2
=0
?? 2
?? '2
-(?? +?? -1)?? '
+?? =0
(?? '
-1)?? =?? ?? '
(?? '
-1)+?? '
?? =?? ?? '
+
?? '
?? '
-1
Page 4
Edurev123
3. Equation of 1st Order but Nor of 1st
Degree
3.1. Obtain Clairaut's form of the differential equation
(?? ?? ?? ????
-?? )(?? ????
????
+?? )=?? ?? ????
????
Also find its general solution.
(2011 : 15 Marks)
Solution:
The given differential equation is
(?? ????
????
-?? )(?? ????
????
+?? )=?? 2
????
????
Put
????
????
=?? ,?? 2
=?? ,?? 2
=?? ? ??????? =???? ,??????? =????
?
????
????
=
2?????? 2?????? ??? =
?? ?? ?? ,?? =
????
????
? from (i), (?? ·
?? ?? ?? -?? )(?? ·
?? ?? ?? +?? )=?? 2
?? ?? ?? ? (
?? ?? 2-?? 2
?? )-?? (?? +1)=?? 2
?? ?? ?? ? ???? -?? =
?? 2
?? ?? +1
? ?? =???? -
?? 2
?? ?? +1
? ?? =???? +?? (?? ) which is Clairaut's form.
? Its general solution is
?? =???? +?? (?? ) where ?? is an arbitrary constant
? ?? 2
=?? ?? 2
+?? (?? )
3.2 Solve the DE: ?? =???? -?? ?? where ?? =
????
????
.
(2015 : 13 Marks)
Solution:
Differentiate w.r.t. ??
1
?? =?? +?? ????
????
-2?? ????
????
? 1-?? 2
=(?? 1-2?? 2
)
????
????
? (???? -2?? 2
)???? +(?? 2
-1)???? =0 (?????? +?????? =0)
??? ??? =?? ,
??? ??? =2??
1
?? (
??? ??? -
??? ??? )=
-?? ?? 2
-1
I.F. =?? ?
-?? ?? 2
-1
????
=?? -
1
2
log (?? 2
-1)
=
1
v?? 2
-1
D.E. =(
????
v?? 2
-1
-
2?? 2
v?? 2
-1
)???? +(v?? 2
-1)???? =0
?
????
v?? 2
-1
-
2?? 2
v?? 2
-1
= constant
? 2v?? 2
-1-2? ?? ·
?? v?? 2
-1
=?? 1
??? v?? 2
-1-2?? ?
?? v?? 2
-1
+2?
?? v?? 2
-1
=?? ?? ? ?? v?? 2
-1-2?? v?? 2
-1+2? v?? 2
-1=?? 1
??? v?? 2
-1-2?? v?? 2
-1+?? v?? 2
-1-log|(?? +v?? 2
-1|=?? 1
? ?? =?? +
log |?? +v?? 2
-1|+?? 1
v?? 2
-1
?? =???? -?? 2
=?? [log |?? +v?? 2
-1|+?? ]
v?? 2
-1
3.3 Solve the following simultaneous linear ???? (?? +?? )?? =?? +?? ?? and (?? +?? )?? =?? +
?? ?? where ?? and ?? are functions of independent variable ?? and ?? =
?? ????
.
(2017 : 8 Marks)
Solution:
(?? +1)?? =?? +?? ?? (??)
(?? +1)?? =?? +?? ?? (???? )
Applying (?? +1) operator to (i)
(?? +1)
2
?? =(?? +1)?? +(?? +1)?? ??
(?? 2
+2?? +1)?? =?? +?? ?? +2?? ?? (?? 2
+2?? )?? =0?? ??
Solution to homogeneous equation
(?? 2
+2?? )?? =0, i.e., ?? (?? +2)?? =0 is
?? ?? =?? 1
+?? 2
?? -2??
Particular integral,
???? =
1
?? (?? +2)
(3?? ?? )=
3
1(1+2)
·?? ?? =?? ??
? ?? =?? 1
+?? 2
?? -2?? +?? ??
From (1)
?? =(?? +1)?? -?? ?? =-2?? 2
?? -2?? +?? ?? +?? 1
+?? 2
?? -2?? ?? =?? 1
-?? 2
?? -2?? +?? ??
3.4 Consider the ???? ,???? ?? ?? -(?? ?? +?? ?? -?? )?? +???? =?? where ?? =
????
????
. Substituting ?? =
?? ?? and ?? =?? ?? reduce the equation to Clairaut's form in terms of ?? ,?? and ?? '
=
????
????
.
Hence or otherwise solve the equation.
(20i7 : 8 Marks)
Solution:
???? ?? 2
-(?? 2
+?? 2
-1)?? +???? =0
?? =?? 2
? ???? =2?????? ?? =?? 2
????? =2?????? ?
????
????
=
?? ?? ????
????
i.e., ?? '
=
?? ?? ?? or ?? =
?? ?? ?? '
(??)
Substituting in (i),
???? ·
?? 2
?? 2
·?? 2
-(?? +?? -1)
?? ?? ?? '
+???? =0
? ?? 2
·?? 2
-(?? +?? -1)?? '
+?? 2
=0
?? 2
?? '2
-(?? +?? -1)?? '
+?? =0
(?? '
-1)?? =?? ?? '
(?? '
-1)+?? '
?? =?? ?? '
+
?? '
?? '
-1
This is Clairaut's form
? ?? =???? +
?? ?? -1
Solution to (1)? ?? 2
=?? ?? 2
+
?? ?? -1
3.5 Solve : (
????
????
)
?? ?? +?? ????
????
?? -?? =?? .
(2018: 13 marks)
Solution:
Given equation is
(
????
????
)
2
?? +2
????
????
?? -?? =0
Let
????
?? ?? =??
? equation becomes ?? ?? 2
+2???? -?? =0?2???? =?? -?? ?? 2
? ?? =
?? 2?? -
????
2
?
????
????
=
1
?? =
1
2?? -
?? 2?? 2
????
????
·
?? 2
-
?? 2
????
????
?
1
2?? =
-?? 2
-
?????? 2????
(
1
?? 2
+1)
?
1
2
(?? 2
+1)
?? =
-?? 2
????
????
(?? 2
+1)
?? 2
?
?? ????
=
-????
??
Integrating on both sides, we get
log ?? =log ?? +log ?? , where ?? is a constant.
? ???? =?? ??? =
?? ??
Putting this value in given differential equation, we get
Page 5
Edurev123
3. Equation of 1st Order but Nor of 1st
Degree
3.1. Obtain Clairaut's form of the differential equation
(?? ?? ?? ????
-?? )(?? ????
????
+?? )=?? ?? ????
????
Also find its general solution.
(2011 : 15 Marks)
Solution:
The given differential equation is
(?? ????
????
-?? )(?? ????
????
+?? )=?? 2
????
????
Put
????
????
=?? ,?? 2
=?? ,?? 2
=?? ? ??????? =???? ,??????? =????
?
????
????
=
2?????? 2?????? ??? =
?? ?? ?? ,?? =
????
????
? from (i), (?? ·
?? ?? ?? -?? )(?? ·
?? ?? ?? +?? )=?? 2
?? ?? ?? ? (
?? ?? 2-?? 2
?? )-?? (?? +1)=?? 2
?? ?? ?? ? ???? -?? =
?? 2
?? ?? +1
? ?? =???? -
?? 2
?? ?? +1
? ?? =???? +?? (?? ) which is Clairaut's form.
? Its general solution is
?? =???? +?? (?? ) where ?? is an arbitrary constant
? ?? 2
=?? ?? 2
+?? (?? )
3.2 Solve the DE: ?? =???? -?? ?? where ?? =
????
????
.
(2015 : 13 Marks)
Solution:
Differentiate w.r.t. ??
1
?? =?? +?? ????
????
-2?? ????
????
? 1-?? 2
=(?? 1-2?? 2
)
????
????
? (???? -2?? 2
)???? +(?? 2
-1)???? =0 (?????? +?????? =0)
??? ??? =?? ,
??? ??? =2??
1
?? (
??? ??? -
??? ??? )=
-?? ?? 2
-1
I.F. =?? ?
-?? ?? 2
-1
????
=?? -
1
2
log (?? 2
-1)
=
1
v?? 2
-1
D.E. =(
????
v?? 2
-1
-
2?? 2
v?? 2
-1
)???? +(v?? 2
-1)???? =0
?
????
v?? 2
-1
-
2?? 2
v?? 2
-1
= constant
? 2v?? 2
-1-2? ?? ·
?? v?? 2
-1
=?? 1
??? v?? 2
-1-2?? ?
?? v?? 2
-1
+2?
?? v?? 2
-1
=?? ?? ? ?? v?? 2
-1-2?? v?? 2
-1+2? v?? 2
-1=?? 1
??? v?? 2
-1-2?? v?? 2
-1+?? v?? 2
-1-log|(?? +v?? 2
-1|=?? 1
? ?? =?? +
log |?? +v?? 2
-1|+?? 1
v?? 2
-1
?? =???? -?? 2
=?? [log |?? +v?? 2
-1|+?? ]
v?? 2
-1
3.3 Solve the following simultaneous linear ???? (?? +?? )?? =?? +?? ?? and (?? +?? )?? =?? +
?? ?? where ?? and ?? are functions of independent variable ?? and ?? =
?? ????
.
(2017 : 8 Marks)
Solution:
(?? +1)?? =?? +?? ?? (??)
(?? +1)?? =?? +?? ?? (???? )
Applying (?? +1) operator to (i)
(?? +1)
2
?? =(?? +1)?? +(?? +1)?? ??
(?? 2
+2?? +1)?? =?? +?? ?? +2?? ?? (?? 2
+2?? )?? =0?? ??
Solution to homogeneous equation
(?? 2
+2?? )?? =0, i.e., ?? (?? +2)?? =0 is
?? ?? =?? 1
+?? 2
?? -2??
Particular integral,
???? =
1
?? (?? +2)
(3?? ?? )=
3
1(1+2)
·?? ?? =?? ??
? ?? =?? 1
+?? 2
?? -2?? +?? ??
From (1)
?? =(?? +1)?? -?? ?? =-2?? 2
?? -2?? +?? ?? +?? 1
+?? 2
?? -2?? ?? =?? 1
-?? 2
?? -2?? +?? ??
3.4 Consider the ???? ,???? ?? ?? -(?? ?? +?? ?? -?? )?? +???? =?? where ?? =
????
????
. Substituting ?? =
?? ?? and ?? =?? ?? reduce the equation to Clairaut's form in terms of ?? ,?? and ?? '
=
????
????
.
Hence or otherwise solve the equation.
(20i7 : 8 Marks)
Solution:
???? ?? 2
-(?? 2
+?? 2
-1)?? +???? =0
?? =?? 2
? ???? =2?????? ?? =?? 2
????? =2?????? ?
????
????
=
?? ?? ????
????
i.e., ?? '
=
?? ?? ?? or ?? =
?? ?? ?? '
(??)
Substituting in (i),
???? ·
?? 2
?? 2
·?? 2
-(?? +?? -1)
?? ?? ?? '
+???? =0
? ?? 2
·?? 2
-(?? +?? -1)?? '
+?? 2
=0
?? 2
?? '2
-(?? +?? -1)?? '
+?? =0
(?? '
-1)?? =?? ?? '
(?? '
-1)+?? '
?? =?? ?? '
+
?? '
?? '
-1
This is Clairaut's form
? ?? =???? +
?? ?? -1
Solution to (1)? ?? 2
=?? ?? 2
+
?? ?? -1
3.5 Solve : (
????
????
)
?? ?? +?? ????
????
?? -?? =?? .
(2018: 13 marks)
Solution:
Given equation is
(
????
????
)
2
?? +2
????
????
?? -?? =0
Let
????
?? ?? =??
? equation becomes ?? ?? 2
+2???? -?? =0?2???? =?? -?? ?? 2
? ?? =
?? 2?? -
????
2
?
????
????
=
1
?? =
1
2?? -
?? 2?? 2
????
????
·
?? 2
-
?? 2
????
????
?
1
2?? =
-?? 2
-
?????? 2????
(
1
?? 2
+1)
?
1
2
(?? 2
+1)
?? =
-?? 2
????
????
(?? 2
+1)
?? 2
?
?? ????
=
-????
??
Integrating on both sides, we get
log ?? =log ?? +log ?? , where ?? is a constant.
? ???? =?? ??? =
?? ??
Putting this value in given differential equation, we get
2·
?? ?? ?? =?? -?? ?? 2
?? ?? ?
2????
?? =?? -
?? 2
?? ?2???? =?? 2
-?? 2
? ?? 2
-2???? =?? 2
3.6 Obtain the singular solution of the differential equation
(
????
????
)
?? (
?? ?? )
?? ?????? ?? ?? -?? (
????
????
)(
?? ?? )+(
?? ?? )
?? ?????????? ?? ?? =??
Also, find the complete primitive of the given differential equation. Give the
geometrical interpretations of the complete primitive and singular solution.
Solution:
Given :
(
????
????
)
2
(
?? ?? )
2
cot
2
?? -2(
????
????
)(
?? ?? )+(
?? ?? )
2
cosec
2
?? =1
which can be written as :
?? 2
?? 2
cot
2
?? -2?????? +?? 2
cosec
2
?? =?? 2
?? 2
?? 2
cos
2
?? sin
2
?? -2?????? +?? 2
1
sin
2
?? =?? 2
? ?? 2
?? 2
cos
2
?? -2?????? sin
2
?? +?? 2
-?? 2
sin
2
?? =0
? (???? )
2
-(2???? )?? tan
2
?? +(?? 2
sec
2
?? -?? 2
tan
2
?? )=0
???? =
2?? tan
2
?? +v4?? 2
tan
4
?? -4(?? 2
sec
2
?? -?? 2
tan
2
?? )
2
???? =?? tan
2
?? ±v?? 2
tan
2
?? (tan
2
?? +1)-?? 2
sec
2
?? ???? =?? tan
2
?? ±sec ?? v?? 2
tan
2
?? -?? 2
?????? -?? tan
2
?????? =±sec ?? v(?? 2
tar
2
?? -?? 2
)????
? ±
?? tan
2
?????? -???? ?? v(?? 2
tan
2
?? -?? 2
)
=-sec ?????? ?????????????????????? , ±v?? 2
tan
2
?? -?? 2
=?? -?? sec ?? ???????????????? , ?? 2
+tan
2
?? -?? 2
=?? 2
-2???? sec ?? +?? 2
sec
2
?? =?? 2
(tan
2
?? -sec
2
?? )-?? 2
=?? 2
-2cosec ?? =-?? 2
-?? 2
=?? 2
=2???? sec ?? [?-1=tan
2
-sec
2
?? ]
? ?? 2
+?? 2
-2???? sec ?? +?? 2
=0
From (?? )
?? 2
?? 2
cos
2
?? -2?????? sin
2
?? +?? 2
-?? 2
sin
2
?? =0
Read More