UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Gauss-Divergence Theorem Stoles Theorem and Green’s to Identity

Gauss-Divergence Theorem Stoles Theorem and Green’s to Identity | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
7. Gauss-Divergence Theorem Stoles 
Theorem and Green’s to Identity 
7.1 Find the work done in moving the particle on 2 round the ellipse 
?? ?? ????
+
?? ?? ????
=?? ,?? =
?? under the field of force given by 
???? 
=(?? ?? -?? +?? )??ˆ+(?? +?? -?? )??ˆ+(?? ?? -?? ?? +?? ?? )??ˆ
 
(2009 : 20 Marks) 
Solution: 
Let ?? :
?? 2
25
+
?? 2
16
=1,?? =0 denote the ellipse. 
 Work done =?  
?? ?? 
?
·?? ??  
By Stoke's theorem 
?  
?? ?? 
·?? ?? =??
?? (?×?? 
)·??ˆ???? 
where ?? is the surface of the ellipse 
?×?? 
 =
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? 2?? -?? +?? ?? +?? -?? 3?? -2?? +4?? |
|
 =-??ˆ-2??ˆ+2??ˆ
 
For. Snormal is along positive z-axis 
?                                                  ??ˆ =??ˆ
(?×?? 
)·??ˆ =2
?                   ??
?? ?(?×?? 
)·??ˆ???? =??
?? ?2???? =2× Area of ellipse 
 =2?????? =2?? ·5·4
 =40?? 
7.2 Using divergent theorem evaluate ?
?? ????? 
·?? ???? 
 where ???? 
=?? ?? ??ˆ+?? ?? ??ˆ+?? ?? ??ˆ
 and ?? is 
the surface of the sphere ?? ?? +?? ?? +?? ?? =?? ?? . 
(2009 : 20 Marks) 
Solution: 
Page 2


Edurev123 
7. Gauss-Divergence Theorem Stoles 
Theorem and Green’s to Identity 
7.1 Find the work done in moving the particle on 2 round the ellipse 
?? ?? ????
+
?? ?? ????
=?? ,?? =
?? under the field of force given by 
???? 
=(?? ?? -?? +?? )??ˆ+(?? +?? -?? )??ˆ+(?? ?? -?? ?? +?? ?? )??ˆ
 
(2009 : 20 Marks) 
Solution: 
Let ?? :
?? 2
25
+
?? 2
16
=1,?? =0 denote the ellipse. 
 Work done =?  
?? ?? 
?
·?? ??  
By Stoke's theorem 
?  
?? ?? 
·?? ?? =??
?? (?×?? 
)·??ˆ???? 
where ?? is the surface of the ellipse 
?×?? 
 =
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? 2?? -?? +?? ?? +?? -?? 3?? -2?? +4?? |
|
 =-??ˆ-2??ˆ+2??ˆ
 
For. Snormal is along positive z-axis 
?                                                  ??ˆ =??ˆ
(?×?? 
)·??ˆ =2
?                   ??
?? ?(?×?? 
)·??ˆ???? =??
?? ?2???? =2× Area of ellipse 
 =2?????? =2?? ·5·4
 =40?? 
7.2 Using divergent theorem evaluate ?
?? ????? 
·?? ???? 
 where ???? 
=?? ?? ??ˆ+?? ?? ??ˆ+?? ?? ??ˆ
 and ?? is 
the surface of the sphere ?? ?? +?? ?? +?? ?? =?? ?? . 
(2009 : 20 Marks) 
Solution: 
By gauss divergence theorem 
 
??
?? ??? 
·?? ?? 
 =??
?? ?(?·?? 
)????
?·?? 
 =? 
?
??? ??ˆ·?? 
=3?? 2
+3?? 2
+3?? 2
 =3(?? 2
+?? 2
+?? 2
)
 
?? is surface of sphere ?? 2
+?? 2
+?? 2
=?? 2
. 
??? is the volume compressing the whole sphere. 
??
?? ??? 
·?? ?? 
 =??
?? ?(?·?? 
)????
 =? 1(3(?? 2
+?? 2
+?? 2
)????
 
Converting to spherical polar coordinates. 
?? 2
+?? 2
+?? 2
 =?? 2
???? =?? 2
sin ?????????????? ?? =? ?
2?? ?? =0
?? ?
2?? ?? =0
?? ?
?? ?? =0
?3?? 2
·?? 2
sin ?????????????? =? ?
2?? 0
?(? ?
2?? 0
?? ?
2
0
?(3?? 4
???? )sin ?????? )????
 =? ?
?? 0
?[
3?? 5
5
? ?
?? 0
?sin ?????? ]????
 =
3?? 5
5
[-cos ?? ]
0
?? ?? =
6?? ?? 5
5
 
7.3 Find the value of ?
?? ?(???? 
×???? 
)·?? ???? 
 taken over the upper portion of the surface 
?? ?? +?? ?? -?? ???? +???? =?? and the boundary curve lies on the plane ?? =?? when 
???? 
=(?? ?? +?? ?? -?? ?? )??ˆ+(?? ?? +?? ?? -?? ?? )??ˆ+(?? ?? +?? ?? -?? ?? )??ˆ
 
(2009 : 20 Mar's) 
Solution: 
The given surface ?? 1
 
?? 2
+?? 2
-2???? +???? =0 
?                                                                        (?? -?? )
2
+?? 2
=?? 2
-???? 
Page 3


Edurev123 
7. Gauss-Divergence Theorem Stoles 
Theorem and Green’s to Identity 
7.1 Find the work done in moving the particle on 2 round the ellipse 
?? ?? ????
+
?? ?? ????
=?? ,?? =
?? under the field of force given by 
???? 
=(?? ?? -?? +?? )??ˆ+(?? +?? -?? )??ˆ+(?? ?? -?? ?? +?? ?? )??ˆ
 
(2009 : 20 Marks) 
Solution: 
Let ?? :
?? 2
25
+
?? 2
16
=1,?? =0 denote the ellipse. 
 Work done =?  
?? ?? 
?
·?? ??  
By Stoke's theorem 
?  
?? ?? 
·?? ?? =??
?? (?×?? 
)·??ˆ???? 
where ?? is the surface of the ellipse 
?×?? 
 =
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? 2?? -?? +?? ?? +?? -?? 3?? -2?? +4?? |
|
 =-??ˆ-2??ˆ+2??ˆ
 
For. Snormal is along positive z-axis 
?                                                  ??ˆ =??ˆ
(?×?? 
)·??ˆ =2
?                   ??
?? ?(?×?? 
)·??ˆ???? =??
?? ?2???? =2× Area of ellipse 
 =2?????? =2?? ·5·4
 =40?? 
7.2 Using divergent theorem evaluate ?
?? ????? 
·?? ???? 
 where ???? 
=?? ?? ??ˆ+?? ?? ??ˆ+?? ?? ??ˆ
 and ?? is 
the surface of the sphere ?? ?? +?? ?? +?? ?? =?? ?? . 
(2009 : 20 Marks) 
Solution: 
By gauss divergence theorem 
 
??
?? ??? 
·?? ?? 
 =??
?? ?(?·?? 
)????
?·?? 
 =? 
?
??? ??ˆ·?? 
=3?? 2
+3?? 2
+3?? 2
 =3(?? 2
+?? 2
+?? 2
)
 
?? is surface of sphere ?? 2
+?? 2
+?? 2
=?? 2
. 
??? is the volume compressing the whole sphere. 
??
?? ??? 
·?? ?? 
 =??
?? ?(?·?? 
)????
 =? 1(3(?? 2
+?? 2
+?? 2
)????
 
Converting to spherical polar coordinates. 
?? 2
+?? 2
+?? 2
 =?? 2
???? =?? 2
sin ?????????????? ?? =? ?
2?? ?? =0
?? ?
2?? ?? =0
?? ?
?? ?? =0
?3?? 2
·?? 2
sin ?????????????? =? ?
2?? 0
?(? ?
2?? 0
?? ?
2
0
?(3?? 4
???? )sin ?????? )????
 =? ?
?? 0
?[
3?? 5
5
? ?
?? 0
?sin ?????? ]????
 =
3?? 5
5
[-cos ?? ]
0
?? ?? =
6?? ?? 5
5
 
7.3 Find the value of ?
?? ?(???? 
×???? 
)·?? ???? 
 taken over the upper portion of the surface 
?? ?? +?? ?? -?? ???? +???? =?? and the boundary curve lies on the plane ?? =?? when 
???? 
=(?? ?? +?? ?? -?? ?? )??ˆ+(?? ?? +?? ?? -?? ?? )??ˆ+(?? ?? +?? ?? -?? ?? )??ˆ
 
(2009 : 20 Mar's) 
Solution: 
The given surface ?? 1
 
?? 2
+?? 2
-2???? +???? =0 
?                                                                        (?? -?? )
2
+?? 2
=?? 2
-???? 
is of an inverted paraboloid as there is maximum value of zmax=a. Assumption ?? =
+???? . Had ' ?? ' been-ve, it would not be inverted paraboloid. Consider the part of the 
paraboloid enclosed by ?? 1
 and ?? 2
 i.e., the circle of intersection in the XY-plane. 
?? 2
(?? -?? )
2
+?? 2
=?? 2
,?? =0 
These surfaces enclosed a volume. 
                                                 
Using gauss divergence theorem 
? ?
?? =?? 1
+?? 2
?(?×?? 
)·?? ?? 
 =??
?? ??·(?×?? 
)????
 =0 as ?·(?×?? 
)=0
 
 
 
?                                ?
?? 1
?(?×?? 
)·???? =-?
?? 2
?(?×?? 
)·???? 
Now for ?? 2
 
??ˆ = -??ˆ
 (outward normal is towards 
 downward direction). 
 
?×?? 
=
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 2
+?? 2
-?? 2
?? 2
+?? 2
-?? 2
?? 2
+?? 2
-?? 2
|
|
 
=(2?? -2?? )??ˆ+2(?? -?? )??ˆ+2(?? -?? )??ˆ
 
?                          (?×?? 
)·??ˆ =2(?? -?? ) 
                      ?? =-? ?
?? 2
?2(?? -?? )???? =? 2(?? -?? )????
 
Page 4


Edurev123 
7. Gauss-Divergence Theorem Stoles 
Theorem and Green’s to Identity 
7.1 Find the work done in moving the particle on 2 round the ellipse 
?? ?? ????
+
?? ?? ????
=?? ,?? =
?? under the field of force given by 
???? 
=(?? ?? -?? +?? )??ˆ+(?? +?? -?? )??ˆ+(?? ?? -?? ?? +?? ?? )??ˆ
 
(2009 : 20 Marks) 
Solution: 
Let ?? :
?? 2
25
+
?? 2
16
=1,?? =0 denote the ellipse. 
 Work done =?  
?? ?? 
?
·?? ??  
By Stoke's theorem 
?  
?? ?? 
·?? ?? =??
?? (?×?? 
)·??ˆ???? 
where ?? is the surface of the ellipse 
?×?? 
 =
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? 2?? -?? +?? ?? +?? -?? 3?? -2?? +4?? |
|
 =-??ˆ-2??ˆ+2??ˆ
 
For. Snormal is along positive z-axis 
?                                                  ??ˆ =??ˆ
(?×?? 
)·??ˆ =2
?                   ??
?? ?(?×?? 
)·??ˆ???? =??
?? ?2???? =2× Area of ellipse 
 =2?????? =2?? ·5·4
 =40?? 
7.2 Using divergent theorem evaluate ?
?? ????? 
·?? ???? 
 where ???? 
=?? ?? ??ˆ+?? ?? ??ˆ+?? ?? ??ˆ
 and ?? is 
the surface of the sphere ?? ?? +?? ?? +?? ?? =?? ?? . 
(2009 : 20 Marks) 
Solution: 
By gauss divergence theorem 
 
??
?? ??? 
·?? ?? 
 =??
?? ?(?·?? 
)????
?·?? 
 =? 
?
??? ??ˆ·?? 
=3?? 2
+3?? 2
+3?? 2
 =3(?? 2
+?? 2
+?? 2
)
 
?? is surface of sphere ?? 2
+?? 2
+?? 2
=?? 2
. 
??? is the volume compressing the whole sphere. 
??
?? ??? 
·?? ?? 
 =??
?? ?(?·?? 
)????
 =? 1(3(?? 2
+?? 2
+?? 2
)????
 
Converting to spherical polar coordinates. 
?? 2
+?? 2
+?? 2
 =?? 2
???? =?? 2
sin ?????????????? ?? =? ?
2?? ?? =0
?? ?
2?? ?? =0
?? ?
?? ?? =0
?3?? 2
·?? 2
sin ?????????????? =? ?
2?? 0
?(? ?
2?? 0
?? ?
2
0
?(3?? 4
???? )sin ?????? )????
 =? ?
?? 0
?[
3?? 5
5
? ?
?? 0
?sin ?????? ]????
 =
3?? 5
5
[-cos ?? ]
0
?? ?? =
6?? ?? 5
5
 
7.3 Find the value of ?
?? ?(???? 
×???? 
)·?? ???? 
 taken over the upper portion of the surface 
?? ?? +?? ?? -?? ???? +???? =?? and the boundary curve lies on the plane ?? =?? when 
???? 
=(?? ?? +?? ?? -?? ?? )??ˆ+(?? ?? +?? ?? -?? ?? )??ˆ+(?? ?? +?? ?? -?? ?? )??ˆ
 
(2009 : 20 Mar's) 
Solution: 
The given surface ?? 1
 
?? 2
+?? 2
-2???? +???? =0 
?                                                                        (?? -?? )
2
+?? 2
=?? 2
-???? 
is of an inverted paraboloid as there is maximum value of zmax=a. Assumption ?? =
+???? . Had ' ?? ' been-ve, it would not be inverted paraboloid. Consider the part of the 
paraboloid enclosed by ?? 1
 and ?? 2
 i.e., the circle of intersection in the XY-plane. 
?? 2
(?? -?? )
2
+?? 2
=?? 2
,?? =0 
These surfaces enclosed a volume. 
                                                 
Using gauss divergence theorem 
? ?
?? =?? 1
+?? 2
?(?×?? 
)·?? ?? 
 =??
?? ??·(?×?? 
)????
 =0 as ?·(?×?? 
)=0
 
 
 
?                                ?
?? 1
?(?×?? 
)·???? =-?
?? 2
?(?×?? 
)·???? 
Now for ?? 2
 
??ˆ = -??ˆ
 (outward normal is towards 
 downward direction). 
 
?×?? 
=
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 2
+?? 2
-?? 2
?? 2
+?? 2
-?? 2
?? 2
+?? 2
-?? 2
|
|
 
=(2?? -2?? )??ˆ+2(?? -?? )??ˆ+2(?? -?? )??ˆ
 
?                          (?×?? 
)·??ˆ =2(?? -?? ) 
                      ?? =-? ?
?? 2
?2(?? -?? )???? =? 2(?? -?? )????
 
Converting to polar coordinates. 
?? =?? +?? cos ?? ?? =?? sin ?? ???? =?????????? ?? =2? ?
2?? ?? =0
?? ?
?? ?? =0
?(?? +?? cos ?? -?? sin ?? )?????????? =2? ?
2?? ?? =0
?[
?? ?? 2
2
+
?? 3
3
(cos ?? -sin ?? )]
0
?? ????
 =2? ?
2?? ?? =0
?
?? 3
2
+
?? 3
3
(cos ?? -sin ?? )????
 =2·
?? 3
2
·2?? (as integral of sin ?? and cos ?? over 0 to 2?? is zero). 
 =2?? ?? 3
 
7.4 Verify Green's Theorem for 
?? -?? ?????? ?????? +?? -?? ?????? ?????? 
the path of integration being the boundary of the square whose vertices are 
(?? ,?? ),(
?? ?? ,?? ),(
?? ?? ,
?? ?? ) and (?? ,
?? ?? ) . 
(2010: 20 marks) 
Solution: 
By Green's Theorem, 
? (?????? +?????? )=? (
??? ??? -
??? ??? )???????? 
 
Given equation is ?? -?? sin ?????? +?? -?? cos ?????? 
Here, 
Page 5


Edurev123 
7. Gauss-Divergence Theorem Stoles 
Theorem and Green’s to Identity 
7.1 Find the work done in moving the particle on 2 round the ellipse 
?? ?? ????
+
?? ?? ????
=?? ,?? =
?? under the field of force given by 
???? 
=(?? ?? -?? +?? )??ˆ+(?? +?? -?? )??ˆ+(?? ?? -?? ?? +?? ?? )??ˆ
 
(2009 : 20 Marks) 
Solution: 
Let ?? :
?? 2
25
+
?? 2
16
=1,?? =0 denote the ellipse. 
 Work done =?  
?? ?? 
?
·?? ??  
By Stoke's theorem 
?  
?? ?? 
·?? ?? =??
?? (?×?? 
)·??ˆ???? 
where ?? is the surface of the ellipse 
?×?? 
 =
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? 2?? -?? +?? ?? +?? -?? 3?? -2?? +4?? |
|
 =-??ˆ-2??ˆ+2??ˆ
 
For. Snormal is along positive z-axis 
?                                                  ??ˆ =??ˆ
(?×?? 
)·??ˆ =2
?                   ??
?? ?(?×?? 
)·??ˆ???? =??
?? ?2???? =2× Area of ellipse 
 =2?????? =2?? ·5·4
 =40?? 
7.2 Using divergent theorem evaluate ?
?? ????? 
·?? ???? 
 where ???? 
=?? ?? ??ˆ+?? ?? ??ˆ+?? ?? ??ˆ
 and ?? is 
the surface of the sphere ?? ?? +?? ?? +?? ?? =?? ?? . 
(2009 : 20 Marks) 
Solution: 
By gauss divergence theorem 
 
??
?? ??? 
·?? ?? 
 =??
?? ?(?·?? 
)????
?·?? 
 =? 
?
??? ??ˆ·?? 
=3?? 2
+3?? 2
+3?? 2
 =3(?? 2
+?? 2
+?? 2
)
 
?? is surface of sphere ?? 2
+?? 2
+?? 2
=?? 2
. 
??? is the volume compressing the whole sphere. 
??
?? ??? 
·?? ?? 
 =??
?? ?(?·?? 
)????
 =? 1(3(?? 2
+?? 2
+?? 2
)????
 
Converting to spherical polar coordinates. 
?? 2
+?? 2
+?? 2
 =?? 2
???? =?? 2
sin ?????????????? ?? =? ?
2?? ?? =0
?? ?
2?? ?? =0
?? ?
?? ?? =0
?3?? 2
·?? 2
sin ?????????????? =? ?
2?? 0
?(? ?
2?? 0
?? ?
2
0
?(3?? 4
???? )sin ?????? )????
 =? ?
?? 0
?[
3?? 5
5
? ?
?? 0
?sin ?????? ]????
 =
3?? 5
5
[-cos ?? ]
0
?? ?? =
6?? ?? 5
5
 
7.3 Find the value of ?
?? ?(???? 
×???? 
)·?? ???? 
 taken over the upper portion of the surface 
?? ?? +?? ?? -?? ???? +???? =?? and the boundary curve lies on the plane ?? =?? when 
???? 
=(?? ?? +?? ?? -?? ?? )??ˆ+(?? ?? +?? ?? -?? ?? )??ˆ+(?? ?? +?? ?? -?? ?? )??ˆ
 
(2009 : 20 Mar's) 
Solution: 
The given surface ?? 1
 
?? 2
+?? 2
-2???? +???? =0 
?                                                                        (?? -?? )
2
+?? 2
=?? 2
-???? 
is of an inverted paraboloid as there is maximum value of zmax=a. Assumption ?? =
+???? . Had ' ?? ' been-ve, it would not be inverted paraboloid. Consider the part of the 
paraboloid enclosed by ?? 1
 and ?? 2
 i.e., the circle of intersection in the XY-plane. 
?? 2
(?? -?? )
2
+?? 2
=?? 2
,?? =0 
These surfaces enclosed a volume. 
                                                 
Using gauss divergence theorem 
? ?
?? =?? 1
+?? 2
?(?×?? 
)·?? ?? 
 =??
?? ??·(?×?? 
)????
 =0 as ?·(?×?? 
)=0
 
 
 
?                                ?
?? 1
?(?×?? 
)·???? =-?
?? 2
?(?×?? 
)·???? 
Now for ?? 2
 
??ˆ = -??ˆ
 (outward normal is towards 
 downward direction). 
 
?×?? 
=
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 2
+?? 2
-?? 2
?? 2
+?? 2
-?? 2
?? 2
+?? 2
-?? 2
|
|
 
=(2?? -2?? )??ˆ+2(?? -?? )??ˆ+2(?? -?? )??ˆ
 
?                          (?×?? 
)·??ˆ =2(?? -?? ) 
                      ?? =-? ?
?? 2
?2(?? -?? )???? =? 2(?? -?? )????
 
Converting to polar coordinates. 
?? =?? +?? cos ?? ?? =?? sin ?? ???? =?????????? ?? =2? ?
2?? ?? =0
?? ?
?? ?? =0
?(?? +?? cos ?? -?? sin ?? )?????????? =2? ?
2?? ?? =0
?[
?? ?? 2
2
+
?? 3
3
(cos ?? -sin ?? )]
0
?? ????
 =2? ?
2?? ?? =0
?
?? 3
2
+
?? 3
3
(cos ?? -sin ?? )????
 =2·
?? 3
2
·2?? (as integral of sin ?? and cos ?? over 0 to 2?? is zero). 
 =2?? ?? 3
 
7.4 Verify Green's Theorem for 
?? -?? ?????? ?????? +?? -?? ?????? ?????? 
the path of integration being the boundary of the square whose vertices are 
(?? ,?? ),(
?? ?? ,?? ),(
?? ?? ,
?? ?? ) and (?? ,
?? ?? ) . 
(2010: 20 marks) 
Solution: 
By Green's Theorem, 
? (?????? +?????? )=? (
??? ??? -
??? ??? )???????? 
 
Given equation is ?? -?? sin ?????? +?? -?? cos ?????? 
Here, 
?? =?? -?? sin ?? ?? =?? -?? cos ?? 
?   ?(?? -?? sin ?????? +?? -?? cos ?????? )=?(
??? -?? cos ?? ??? -
??? -?? sin ?? ??? )????????  (By Green's Theorem) 
R.H.S. : ?(
??? -?? cos ?? ??? -
??? -?? sin ?? ??? )???????? 
 =? (-?? -?? cos ?? -?? -?? cos ?? )???? ?? '
?? =-2? ?
?? /2
?? =0
?? ?
?? /2
?? =0
??? -?? cos ?????????? =-2[
?? -?? -1
]
0
?? /2
[sin ?? ]
0
?? /2
=
+2
+1
(?? -?? /2
-1)(1-0)=2(?? -?? /2
-1)
 
L.H.S. : ??? -?? sin ?????? +?? -?? cos ?????? 
In figure, from ?? to ?? : 
? (?? -?? sin ?????? +?? -?? cos ?????? ) =? 0???? +0=0
as                                                              sin ?? =0
??????                                                               ???? =0
 
from ?? to ?? : 
             
? (?? -?? sin ?????? +?? -?? cos ?????? ) =0+? ?
?? /2
?? =0
??? -?? /2
cos??????            (???? =0;?? =
?? 2
)
 =?? -?? /2
[sin ?? ]
0
?? /2
=?? -?? /2
 
from ?? to ?? : 
? (?? -?? sin ?????? +?? -?? cos ?????? ) =? ?
0
?? =
?? 2
??? -?? ????
 =-[?? -?? ]
?? /2
0
=-[1-?? -?? /2
]=?? -?? /2
-1
 
from ?? to ?? : 
? (?? -?? sin ?????? +?? -?? cos ?????? )=0+? ?? -?? cos ?????? 
=? ?
0
?? =
?? 2
?cos?? ???? =[sin?? ]
?? /2
0
=0-1=-1 
Line integral along ?? ??? ??? ??? ??? ???? 0+?? -?? /2
+?? -?? /2
-1-1 
Read More
387 videos|203 docs

Top Courses for UPSC

FAQs on Gauss-Divergence Theorem Stoles Theorem and Green’s to Identity - Mathematics Optional Notes for UPSC

1. What is the Gauss-Divergence Theorem?
Ans. The Gauss-Divergence Theorem, also known as Gauss's Theorem, states that the outward flux of a vector field through a closed surface is equal to the divergence of the vector field over the enclosed volume.
2. Can you explain Stoles Theorem?
Ans. Stoles Theorem, also known as Stokes' Theorem, relates the surface integral of the curl of a vector field over a surface to the line integral of the vector field over the boundary of the surface.
3. How is Green's Identity used in mathematics?
Ans. Green's Identity is a fundamental theorem in vector calculus that relates a double integral over a region to a line integral around the boundary of the region. It is used to establish relationships between line integrals and double integrals in various mathematical applications.
4. What are the practical applications of the Gauss-Divergence Theorem?
Ans. The Gauss-Divergence Theorem has various practical applications in physics and engineering, such as fluid dynamics, electromagnetism, and heat transfer. It is used to analyze the flow of fluids, the distribution of electric fields, and the transfer of heat in different systems.
5. How can one apply Stokes' Theorem in real-life situations?
Ans. Stokes' Theorem is used in various real-life situations, such as in electromagnetic theory to calculate the circulation of electric and magnetic fields around closed loops. It is also applied in fluid dynamics to analyze the circulation of fluid flow around closed paths.
387 videos|203 docs
Download as PDF
Explore Courses for UPSC exam

Top Courses for UPSC

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

ppt

,

study material

,

Semester Notes

,

Gauss-Divergence Theorem Stoles Theorem and Green’s to Identity | Mathematics Optional Notes for UPSC

,

practice quizzes

,

Important questions

,

shortcuts and tricks

,

past year papers

,

MCQs

,

Extra Questions

,

Viva Questions

,

Gauss-Divergence Theorem Stoles Theorem and Green’s to Identity | Mathematics Optional Notes for UPSC

,

Free

,

pdf

,

Exam

,

Gauss-Divergence Theorem Stoles Theorem and Green’s to Identity | Mathematics Optional Notes for UPSC

,

Objective type Questions

,

video lectures

,

Summary

,

mock tests for examination

,

Previous Year Questions with Solutions

,

Sample Paper

;