UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Functions of Several (Two or Three) Variables

Functions of Several (Two or Three) Variables | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
7. Functions of Several (Two or Three) 
Variables 
7.1 Find the maxima, minima and saddle points of the surface ?? =(?? ?? -
?? ?? )?? (-?? ?? -?? ?? )/?? . 
(2010 : 15 Marks) 
Solution: 
Given, the surface is ?? =(?? 2
-?? 2
)?? (-?? 2
-?? 2
)/2
 
At extremum, 
?? ?? =?? ?? =0 
???????????????????????????????????????????????????????????????????????????? ?? =2?? ?? (-?? 2
-?? 2
)/2
+(?? 2
-?? 2
)?? (
-?? 2
-?? 2
2
)
×(
-2?? 2
) 
??????????????????? (
-?? 2
-?? 2
2
)
{2?? +(?? 2
+?? 2
)(-?? )}=0 ???????? ?
??????????????????????????????????????????????2?? -?? (?? 2
-?? 2
)=0 ???????? ?
??????????????????????????????????????????????????? (2-?? 2
+?? 2
)=0????????????????????????????????????????????????????????????????????????????(1)?
 
?????????????????????????????????????????????? ?? =-2?? ?? (-?? 2
-?? 2
)/2
+(?? 2
-?? 2
)?? (-?? 2
-?? 2
)/2
×(
-2?? 2
)=0 
????????????????-2?? +(?? 2
-?? 2
)(-?? )=0?????????
?????????????????????????-?? (2+?? 2
-?? 2
)=0?????????
 
????????????????????????????? (2+?? 2
-?? 2
)=0?????????????????????????????????????????????????????????????????????????????????????????????????(2) 
Solving (1) and (2), we get solutions as 
(?? ,?? )=(0,0),(±v2,0),(0,±v2) 
?? ????
=2?? (-?? 2
-?? 2
)/2
+2?? ?? (
-?? 2
-?? 2
2
)
×(
-2?? 2
)-(3?? 2
-?? 2
)?? (
-?? 2
-?? 2
2
)
 
-(?? 3
-?? 2
?? )?? (
-?? 2
-?? 2
2
)
×(-?? ) 
=?? (
-?? 2
-?? 2
2
)
(2-2?? 2
-3?? 2
+?? 2
+?? 4
-?? 2
?? 2
) 
 
Page 2


Edurev123 
7. Functions of Several (Two or Three) 
Variables 
7.1 Find the maxima, minima and saddle points of the surface ?? =(?? ?? -
?? ?? )?? (-?? ?? -?? ?? )/?? . 
(2010 : 15 Marks) 
Solution: 
Given, the surface is ?? =(?? 2
-?? 2
)?? (-?? 2
-?? 2
)/2
 
At extremum, 
?? ?? =?? ?? =0 
???????????????????????????????????????????????????????????????????????????? ?? =2?? ?? (-?? 2
-?? 2
)/2
+(?? 2
-?? 2
)?? (
-?? 2
-?? 2
2
)
×(
-2?? 2
) 
??????????????????? (
-?? 2
-?? 2
2
)
{2?? +(?? 2
+?? 2
)(-?? )}=0 ???????? ?
??????????????????????????????????????????????2?? -?? (?? 2
-?? 2
)=0 ???????? ?
??????????????????????????????????????????????????? (2-?? 2
+?? 2
)=0????????????????????????????????????????????????????????????????????????????(1)?
 
?????????????????????????????????????????????? ?? =-2?? ?? (-?? 2
-?? 2
)/2
+(?? 2
-?? 2
)?? (-?? 2
-?? 2
)/2
×(
-2?? 2
)=0 
????????????????-2?? +(?? 2
-?? 2
)(-?? )=0?????????
?????????????????????????-?? (2+?? 2
-?? 2
)=0?????????
 
????????????????????????????? (2+?? 2
-?? 2
)=0?????????????????????????????????????????????????????????????????????????????????????????????????(2) 
Solving (1) and (2), we get solutions as 
(?? ,?? )=(0,0),(±v2,0),(0,±v2) 
?? ????
=2?? (-?? 2
-?? 2
)/2
+2?? ?? (
-?? 2
-?? 2
2
)
×(
-2?? 2
)-(3?? 2
-?? 2
)?? (
-?? 2
-?? 2
2
)
 
-(?? 3
-?? 2
?? )?? (
-?? 2
-?? 2
2
)
×(-?? ) 
=?? (
-?? 2
-?? 2
2
)
(2-2?? 2
-3?? 2
+?? 2
+?? 4
-?? 2
?? 2
) 
 
?? ????
=(-2?? -?? 2
?? +?? 3
)?? (
?? 2
-?? 2
2
)
×(-?? )+?? (
-?? 2
-?? 2
2
)
(-2-?? 2
+3?? 2
)
=?? (
-?? 2
-?? 2
2
)
(2?? 2
+?? 2
?? 2
-?? 4
-2-?? 2
+3?? 2
)
?? ????
=(-2?? -?? 2
?? +?? 3
)(?? -?? 2
-?? 2
2
)×(-?? )+?? (
-?? 2
-?? 2
2
)
(-2???? )
=?? (
-?? 2
-?? 2
2
)
(2???? +?? 3
?? -?? ?? 3
-2???? )
=?? (
-?? 2
-?? 2
2
)
(?? 3
?? -?? ?? 3
)
 
At (±v2,0):??? ????
=
-?? ?? ,?? ????
=
?? ?? ,?? ????
=0 
???? ????
·?? ????
-?? ????
2
=
-8
?? 2
 
At (0,±v2):???? ????
=
?? ?? ,?? ????
=
-2
?? ,?? ????
=0 
???? ????
·?? ????
-?? ?? ?? 2
=
-8
?? 2
 
At all extremum points, ?? ????
·?? ????
-?? ????
2
<0. 
? All extremum points viz. (0,0),(±v2,0) and (0,±v2) are saddle points. 
7.2 Find the shortest distance from the origin (?? ,?? ) to the hyperbola 
?? ?? +?? ???? +?? ?? ?? =?????? 
(2011 : 15 Marks) 
Solution: 
Let (?? ,?? ) be any point on the given hyperbola. 
We need to minimize v?? 2
+?? 2
 or equivalently (?? 2
+?? 2
) . 
Consider 
?? (?? ,?? ,?? )=?? 2
+?? 2
-?? (?? 2
+8???? +7?? 2
-225) 
???????????????????????????????????????? ?? (?? ,?? ,?? )=2?? -2???? -8???? =0 
Or                        (?? -1)?? +4???? =0??????????????????????????????????????????????????????????????????????????????????(i) 
Also,?????????????????????????????????? ?? (?? ,?? ,?? )=2?? -8???? -14???? =0????????????????????????????????? 
Or                    4???? +(7?? -1)?? =0 
Page 3


Edurev123 
7. Functions of Several (Two or Three) 
Variables 
7.1 Find the maxima, minima and saddle points of the surface ?? =(?? ?? -
?? ?? )?? (-?? ?? -?? ?? )/?? . 
(2010 : 15 Marks) 
Solution: 
Given, the surface is ?? =(?? 2
-?? 2
)?? (-?? 2
-?? 2
)/2
 
At extremum, 
?? ?? =?? ?? =0 
???????????????????????????????????????????????????????????????????????????? ?? =2?? ?? (-?? 2
-?? 2
)/2
+(?? 2
-?? 2
)?? (
-?? 2
-?? 2
2
)
×(
-2?? 2
) 
??????????????????? (
-?? 2
-?? 2
2
)
{2?? +(?? 2
+?? 2
)(-?? )}=0 ???????? ?
??????????????????????????????????????????????2?? -?? (?? 2
-?? 2
)=0 ???????? ?
??????????????????????????????????????????????????? (2-?? 2
+?? 2
)=0????????????????????????????????????????????????????????????????????????????(1)?
 
?????????????????????????????????????????????? ?? =-2?? ?? (-?? 2
-?? 2
)/2
+(?? 2
-?? 2
)?? (-?? 2
-?? 2
)/2
×(
-2?? 2
)=0 
????????????????-2?? +(?? 2
-?? 2
)(-?? )=0?????????
?????????????????????????-?? (2+?? 2
-?? 2
)=0?????????
 
????????????????????????????? (2+?? 2
-?? 2
)=0?????????????????????????????????????????????????????????????????????????????????????????????????(2) 
Solving (1) and (2), we get solutions as 
(?? ,?? )=(0,0),(±v2,0),(0,±v2) 
?? ????
=2?? (-?? 2
-?? 2
)/2
+2?? ?? (
-?? 2
-?? 2
2
)
×(
-2?? 2
)-(3?? 2
-?? 2
)?? (
-?? 2
-?? 2
2
)
 
-(?? 3
-?? 2
?? )?? (
-?? 2
-?? 2
2
)
×(-?? ) 
=?? (
-?? 2
-?? 2
2
)
(2-2?? 2
-3?? 2
+?? 2
+?? 4
-?? 2
?? 2
) 
 
?? ????
=(-2?? -?? 2
?? +?? 3
)?? (
?? 2
-?? 2
2
)
×(-?? )+?? (
-?? 2
-?? 2
2
)
(-2-?? 2
+3?? 2
)
=?? (
-?? 2
-?? 2
2
)
(2?? 2
+?? 2
?? 2
-?? 4
-2-?? 2
+3?? 2
)
?? ????
=(-2?? -?? 2
?? +?? 3
)(?? -?? 2
-?? 2
2
)×(-?? )+?? (
-?? 2
-?? 2
2
)
(-2???? )
=?? (
-?? 2
-?? 2
2
)
(2???? +?? 3
?? -?? ?? 3
-2???? )
=?? (
-?? 2
-?? 2
2
)
(?? 3
?? -?? ?? 3
)
 
At (±v2,0):??? ????
=
-?? ?? ,?? ????
=
?? ?? ,?? ????
=0 
???? ????
·?? ????
-?? ????
2
=
-8
?? 2
 
At (0,±v2):???? ????
=
?? ?? ,?? ????
=
-2
?? ,?? ????
=0 
???? ????
·?? ????
-?? ?? ?? 2
=
-8
?? 2
 
At all extremum points, ?? ????
·?? ????
-?? ????
2
<0. 
? All extremum points viz. (0,0),(±v2,0) and (0,±v2) are saddle points. 
7.2 Find the shortest distance from the origin (?? ,?? ) to the hyperbola 
?? ?? +?? ???? +?? ?? ?? =?????? 
(2011 : 15 Marks) 
Solution: 
Let (?? ,?? ) be any point on the given hyperbola. 
We need to minimize v?? 2
+?? 2
 or equivalently (?? 2
+?? 2
) . 
Consider 
?? (?? ,?? ,?? )=?? 2
+?? 2
-?? (?? 2
+8???? +7?? 2
-225) 
???????????????????????????????????????? ?? (?? ,?? ,?? )=2?? -2???? -8???? =0 
Or                        (?? -1)?? +4???? =0??????????????????????????????????????????????????????????????????????????????????(i) 
Also,?????????????????????????????????? ?? (?? ,?? ,?? )=2?? -8???? -14???? =0????????????????????????????????? 
Or                    4???? +(7?? -1)?? =0 
Since (?? ,?? )?(0,0) (as hyperbola does not pass through the origin), then solving for ?? , 
we have 
|
?? -1 4?? 4?? 7?? -1
|=0?9?? 2
+8?? -1=0 
???????????????????????????????????????????????????????????????????????????? =-1,
1
9
 
If ?? =-1, then -2?? -4?? =0 or ?? =-2?? . 
? From ?? 2
+8???? +7?? 2
=225, we have 
-5?? 2
=225 for which no real solution exists.  
If ?? =
1
9
, then from (i), ???????? =2?? 
? From ?? 2
+8???? +7?? 2
=225, we have 
?? 2
=5 and ?? 2
=20 
??????????????????????????????????????????????????????????? 2
+?? 2
=25 
Thus, the required shortest distance is v25=5. 
7.3 Let ?? (?? ,?? )={
(?? +?? )
?? ?? ?? +?? ?? ; if (?? ,?? )?(?? ,?? )
?? , if (?? ,?? )=(?? ,?? )
. Show that 
?? ?? ?? ?? and 
?? ?? ?? ?? exist at (?? ,?? ) though 
?? (?? ,?? ) is not continuous at (?? ,?? ) . 
(2012 : 15 Marks) 
Solution: 
  ?
?? (?? ,?? )?={
(?? +?? )
2
?? 2
+?? 2
, if (?? ,?? )?(0,0)
1, if (?? ,?? )?(0,0;
?? ?? (0,0)?=lim
h?0
?
?? (h,0)-?? (0,0)
h
?=lim
h?0
?
h
2
h
-1
h
=0
?? ?? (0,0)?=lim
?? ?0
?
?? (0,?? )-?? (0,0)
?? ?=lim
?? ?0
?
?? 2
?? 2
-1
?? =0
 
??? ?? (0,0) and ?? ?? (0,0) exists. 
Page 4


Edurev123 
7. Functions of Several (Two or Three) 
Variables 
7.1 Find the maxima, minima and saddle points of the surface ?? =(?? ?? -
?? ?? )?? (-?? ?? -?? ?? )/?? . 
(2010 : 15 Marks) 
Solution: 
Given, the surface is ?? =(?? 2
-?? 2
)?? (-?? 2
-?? 2
)/2
 
At extremum, 
?? ?? =?? ?? =0 
???????????????????????????????????????????????????????????????????????????? ?? =2?? ?? (-?? 2
-?? 2
)/2
+(?? 2
-?? 2
)?? (
-?? 2
-?? 2
2
)
×(
-2?? 2
) 
??????????????????? (
-?? 2
-?? 2
2
)
{2?? +(?? 2
+?? 2
)(-?? )}=0 ???????? ?
??????????????????????????????????????????????2?? -?? (?? 2
-?? 2
)=0 ???????? ?
??????????????????????????????????????????????????? (2-?? 2
+?? 2
)=0????????????????????????????????????????????????????????????????????????????(1)?
 
?????????????????????????????????????????????? ?? =-2?? ?? (-?? 2
-?? 2
)/2
+(?? 2
-?? 2
)?? (-?? 2
-?? 2
)/2
×(
-2?? 2
)=0 
????????????????-2?? +(?? 2
-?? 2
)(-?? )=0?????????
?????????????????????????-?? (2+?? 2
-?? 2
)=0?????????
 
????????????????????????????? (2+?? 2
-?? 2
)=0?????????????????????????????????????????????????????????????????????????????????????????????????(2) 
Solving (1) and (2), we get solutions as 
(?? ,?? )=(0,0),(±v2,0),(0,±v2) 
?? ????
=2?? (-?? 2
-?? 2
)/2
+2?? ?? (
-?? 2
-?? 2
2
)
×(
-2?? 2
)-(3?? 2
-?? 2
)?? (
-?? 2
-?? 2
2
)
 
-(?? 3
-?? 2
?? )?? (
-?? 2
-?? 2
2
)
×(-?? ) 
=?? (
-?? 2
-?? 2
2
)
(2-2?? 2
-3?? 2
+?? 2
+?? 4
-?? 2
?? 2
) 
 
?? ????
=(-2?? -?? 2
?? +?? 3
)?? (
?? 2
-?? 2
2
)
×(-?? )+?? (
-?? 2
-?? 2
2
)
(-2-?? 2
+3?? 2
)
=?? (
-?? 2
-?? 2
2
)
(2?? 2
+?? 2
?? 2
-?? 4
-2-?? 2
+3?? 2
)
?? ????
=(-2?? -?? 2
?? +?? 3
)(?? -?? 2
-?? 2
2
)×(-?? )+?? (
-?? 2
-?? 2
2
)
(-2???? )
=?? (
-?? 2
-?? 2
2
)
(2???? +?? 3
?? -?? ?? 3
-2???? )
=?? (
-?? 2
-?? 2
2
)
(?? 3
?? -?? ?? 3
)
 
At (±v2,0):??? ????
=
-?? ?? ,?? ????
=
?? ?? ,?? ????
=0 
???? ????
·?? ????
-?? ????
2
=
-8
?? 2
 
At (0,±v2):???? ????
=
?? ?? ,?? ????
=
-2
?? ,?? ????
=0 
???? ????
·?? ????
-?? ?? ?? 2
=
-8
?? 2
 
At all extremum points, ?? ????
·?? ????
-?? ????
2
<0. 
? All extremum points viz. (0,0),(±v2,0) and (0,±v2) are saddle points. 
7.2 Find the shortest distance from the origin (?? ,?? ) to the hyperbola 
?? ?? +?? ???? +?? ?? ?? =?????? 
(2011 : 15 Marks) 
Solution: 
Let (?? ,?? ) be any point on the given hyperbola. 
We need to minimize v?? 2
+?? 2
 or equivalently (?? 2
+?? 2
) . 
Consider 
?? (?? ,?? ,?? )=?? 2
+?? 2
-?? (?? 2
+8???? +7?? 2
-225) 
???????????????????????????????????????? ?? (?? ,?? ,?? )=2?? -2???? -8???? =0 
Or                        (?? -1)?? +4???? =0??????????????????????????????????????????????????????????????????????????????????(i) 
Also,?????????????????????????????????? ?? (?? ,?? ,?? )=2?? -8???? -14???? =0????????????????????????????????? 
Or                    4???? +(7?? -1)?? =0 
Since (?? ,?? )?(0,0) (as hyperbola does not pass through the origin), then solving for ?? , 
we have 
|
?? -1 4?? 4?? 7?? -1
|=0?9?? 2
+8?? -1=0 
???????????????????????????????????????????????????????????????????????????? =-1,
1
9
 
If ?? =-1, then -2?? -4?? =0 or ?? =-2?? . 
? From ?? 2
+8???? +7?? 2
=225, we have 
-5?? 2
=225 for which no real solution exists.  
If ?? =
1
9
, then from (i), ???????? =2?? 
? From ?? 2
+8???? +7?? 2
=225, we have 
?? 2
=5 and ?? 2
=20 
??????????????????????????????????????????????????????????? 2
+?? 2
=25 
Thus, the required shortest distance is v25=5. 
7.3 Let ?? (?? ,?? )={
(?? +?? )
?? ?? ?? +?? ?? ; if (?? ,?? )?(?? ,?? )
?? , if (?? ,?? )=(?? ,?? )
. Show that 
?? ?? ?? ?? and 
?? ?? ?? ?? exist at (?? ,?? ) though 
?? (?? ,?? ) is not continuous at (?? ,?? ) . 
(2012 : 15 Marks) 
Solution: 
  ?
?? (?? ,?? )?={
(?? +?? )
2
?? 2
+?? 2
, if (?? ,?? )?(0,0)
1, if (?? ,?? )?(0,0;
?? ?? (0,0)?=lim
h?0
?
?? (h,0)-?? (0,0)
h
?=lim
h?0
?
h
2
h
-1
h
=0
?? ?? (0,0)?=lim
?? ?0
?
?? (0,?? )-?? (0,0)
?? ?=lim
?? ?0
?
?? 2
?? 2
-1
?? =0
 
??? ?? (0,0) and ?? ?? (0,0) exists. 
Now, 
lim
(?? ,?? )?(0,0)
??? (?? ,?? )?= lim
(?? ,?? )?(0,0)
?
(?? +?? )
2
?? 2
+?? 2
?= lim
(?? ,?? )?(0,0)
?
?? 2
+?? 2
+2????
?? 2
+?? 2
 
Taking ?? =???? 
???????????????????????????????????????????????????=lim
?? ?0
?
?? 2
+?? 2
?? 2
+2?? ·????
?? 2
+?? 2
?? 2
???????????????????????????????????????????????????=lim
?? ?0
?
?? +?? 2
+2?? 1+?? 2
, which is different for the different values of ?? . 
 
?lim
(?? ,?? )?(0,0)
??? (?? ,?? ) does not exist. 
7.4 Find the minimum distance of the line given by the planes ?? ?? +?? ?? +?? ?? =?? 
and ?? -?? =?? from the origin, by the method of Lagrange's multipliers. 
(2012 : 15 Marks) 
Solution: 
 Let 
?? =?? (?? ,?? ,?? )=?? 2
+?? 2
+?? 2
???????????????????????????????????????????(??)
?? (?? ,?? ,?? ) =3?? +4?? +5?? -7=0????????????????????????????????????????????????(ii)
h(?? ,?? ,?? ) =?? -?? -9=0???????????????????????????????????????????????????????????????(iii)
??? =?? ??? +?? ?h
<2?? ,2?? ,2?? > =?? (3,4,5)+?? (1,0,-1)
2?? =3?? +?? 2?? =4?? ??2?? =5?? -?? ????? =
3?? +?? 2
,?? =2?? ,?? =
5?? -?? 2
 
From (ii), 
3[
3?? +?? 2
+2?? +
5?? -?? 2
]=7????????? 
????????????????????????????????????????????????????????????????????????????????????????????25?? -?? =7???????????????????????????????????????????????(v)?? 
???????? (?????? )????????????????????????????????????????????????????????
3?? +?? 2
-
5?? -?? 2
=9 
??????????????????????????????????????????????????????????????????????????????????????????????-?? +?? =9?????????????????????????????????????????????????(vi) 
Solving (v) and (vi) 
Page 5


Edurev123 
7. Functions of Several (Two or Three) 
Variables 
7.1 Find the maxima, minima and saddle points of the surface ?? =(?? ?? -
?? ?? )?? (-?? ?? -?? ?? )/?? . 
(2010 : 15 Marks) 
Solution: 
Given, the surface is ?? =(?? 2
-?? 2
)?? (-?? 2
-?? 2
)/2
 
At extremum, 
?? ?? =?? ?? =0 
???????????????????????????????????????????????????????????????????????????? ?? =2?? ?? (-?? 2
-?? 2
)/2
+(?? 2
-?? 2
)?? (
-?? 2
-?? 2
2
)
×(
-2?? 2
) 
??????????????????? (
-?? 2
-?? 2
2
)
{2?? +(?? 2
+?? 2
)(-?? )}=0 ???????? ?
??????????????????????????????????????????????2?? -?? (?? 2
-?? 2
)=0 ???????? ?
??????????????????????????????????????????????????? (2-?? 2
+?? 2
)=0????????????????????????????????????????????????????????????????????????????(1)?
 
?????????????????????????????????????????????? ?? =-2?? ?? (-?? 2
-?? 2
)/2
+(?? 2
-?? 2
)?? (-?? 2
-?? 2
)/2
×(
-2?? 2
)=0 
????????????????-2?? +(?? 2
-?? 2
)(-?? )=0?????????
?????????????????????????-?? (2+?? 2
-?? 2
)=0?????????
 
????????????????????????????? (2+?? 2
-?? 2
)=0?????????????????????????????????????????????????????????????????????????????????????????????????(2) 
Solving (1) and (2), we get solutions as 
(?? ,?? )=(0,0),(±v2,0),(0,±v2) 
?? ????
=2?? (-?? 2
-?? 2
)/2
+2?? ?? (
-?? 2
-?? 2
2
)
×(
-2?? 2
)-(3?? 2
-?? 2
)?? (
-?? 2
-?? 2
2
)
 
-(?? 3
-?? 2
?? )?? (
-?? 2
-?? 2
2
)
×(-?? ) 
=?? (
-?? 2
-?? 2
2
)
(2-2?? 2
-3?? 2
+?? 2
+?? 4
-?? 2
?? 2
) 
 
?? ????
=(-2?? -?? 2
?? +?? 3
)?? (
?? 2
-?? 2
2
)
×(-?? )+?? (
-?? 2
-?? 2
2
)
(-2-?? 2
+3?? 2
)
=?? (
-?? 2
-?? 2
2
)
(2?? 2
+?? 2
?? 2
-?? 4
-2-?? 2
+3?? 2
)
?? ????
=(-2?? -?? 2
?? +?? 3
)(?? -?? 2
-?? 2
2
)×(-?? )+?? (
-?? 2
-?? 2
2
)
(-2???? )
=?? (
-?? 2
-?? 2
2
)
(2???? +?? 3
?? -?? ?? 3
-2???? )
=?? (
-?? 2
-?? 2
2
)
(?? 3
?? -?? ?? 3
)
 
At (±v2,0):??? ????
=
-?? ?? ,?? ????
=
?? ?? ,?? ????
=0 
???? ????
·?? ????
-?? ????
2
=
-8
?? 2
 
At (0,±v2):???? ????
=
?? ?? ,?? ????
=
-2
?? ,?? ????
=0 
???? ????
·?? ????
-?? ?? ?? 2
=
-8
?? 2
 
At all extremum points, ?? ????
·?? ????
-?? ????
2
<0. 
? All extremum points viz. (0,0),(±v2,0) and (0,±v2) are saddle points. 
7.2 Find the shortest distance from the origin (?? ,?? ) to the hyperbola 
?? ?? +?? ???? +?? ?? ?? =?????? 
(2011 : 15 Marks) 
Solution: 
Let (?? ,?? ) be any point on the given hyperbola. 
We need to minimize v?? 2
+?? 2
 or equivalently (?? 2
+?? 2
) . 
Consider 
?? (?? ,?? ,?? )=?? 2
+?? 2
-?? (?? 2
+8???? +7?? 2
-225) 
???????????????????????????????????????? ?? (?? ,?? ,?? )=2?? -2???? -8???? =0 
Or                        (?? -1)?? +4???? =0??????????????????????????????????????????????????????????????????????????????????(i) 
Also,?????????????????????????????????? ?? (?? ,?? ,?? )=2?? -8???? -14???? =0????????????????????????????????? 
Or                    4???? +(7?? -1)?? =0 
Since (?? ,?? )?(0,0) (as hyperbola does not pass through the origin), then solving for ?? , 
we have 
|
?? -1 4?? 4?? 7?? -1
|=0?9?? 2
+8?? -1=0 
???????????????????????????????????????????????????????????????????????????? =-1,
1
9
 
If ?? =-1, then -2?? -4?? =0 or ?? =-2?? . 
? From ?? 2
+8???? +7?? 2
=225, we have 
-5?? 2
=225 for which no real solution exists.  
If ?? =
1
9
, then from (i), ???????? =2?? 
? From ?? 2
+8???? +7?? 2
=225, we have 
?? 2
=5 and ?? 2
=20 
??????????????????????????????????????????????????????????? 2
+?? 2
=25 
Thus, the required shortest distance is v25=5. 
7.3 Let ?? (?? ,?? )={
(?? +?? )
?? ?? ?? +?? ?? ; if (?? ,?? )?(?? ,?? )
?? , if (?? ,?? )=(?? ,?? )
. Show that 
?? ?? ?? ?? and 
?? ?? ?? ?? exist at (?? ,?? ) though 
?? (?? ,?? ) is not continuous at (?? ,?? ) . 
(2012 : 15 Marks) 
Solution: 
  ?
?? (?? ,?? )?={
(?? +?? )
2
?? 2
+?? 2
, if (?? ,?? )?(0,0)
1, if (?? ,?? )?(0,0;
?? ?? (0,0)?=lim
h?0
?
?? (h,0)-?? (0,0)
h
?=lim
h?0
?
h
2
h
-1
h
=0
?? ?? (0,0)?=lim
?? ?0
?
?? (0,?? )-?? (0,0)
?? ?=lim
?? ?0
?
?? 2
?? 2
-1
?? =0
 
??? ?? (0,0) and ?? ?? (0,0) exists. 
Now, 
lim
(?? ,?? )?(0,0)
??? (?? ,?? )?= lim
(?? ,?? )?(0,0)
?
(?? +?? )
2
?? 2
+?? 2
?= lim
(?? ,?? )?(0,0)
?
?? 2
+?? 2
+2????
?? 2
+?? 2
 
Taking ?? =???? 
???????????????????????????????????????????????????=lim
?? ?0
?
?? 2
+?? 2
?? 2
+2?? ·????
?? 2
+?? 2
?? 2
???????????????????????????????????????????????????=lim
?? ?0
?
?? +?? 2
+2?? 1+?? 2
, which is different for the different values of ?? . 
 
?lim
(?? ,?? )?(0,0)
??? (?? ,?? ) does not exist. 
7.4 Find the minimum distance of the line given by the planes ?? ?? +?? ?? +?? ?? =?? 
and ?? -?? =?? from the origin, by the method of Lagrange's multipliers. 
(2012 : 15 Marks) 
Solution: 
 Let 
?? =?? (?? ,?? ,?? )=?? 2
+?? 2
+?? 2
???????????????????????????????????????????(??)
?? (?? ,?? ,?? ) =3?? +4?? +5?? -7=0????????????????????????????????????????????????(ii)
h(?? ,?? ,?? ) =?? -?? -9=0???????????????????????????????????????????????????????????????(iii)
??? =?? ??? +?? ?h
<2?? ,2?? ,2?? > =?? (3,4,5)+?? (1,0,-1)
2?? =3?? +?? 2?? =4?? ??2?? =5?? -?? ????? =
3?? +?? 2
,?? =2?? ,?? =
5?? -?? 2
 
From (ii), 
3[
3?? +?? 2
+2?? +
5?? -?? 2
]=7????????? 
????????????????????????????????????????????????????????????????????????????????????????????25?? -?? =7???????????????????????????????????????????????(v)?? 
???????? (?????? )????????????????????????????????????????????????????????
3?? +?? 2
-
5?? -?? 2
=9 
??????????????????????????????????????????????????????????????????????????????????????????????-?? +?? =9?????????????????????????????????????????????????(vi) 
Solving (v) and (vi) 
?? =
2
3
,?? =
29
3
? ?? -
35
6
,?? -
4
3
,?? -
-19
6
? Minimum distance =v?? 2
+?? 2
+?? 2
=5v
?? 6
???????? (???? ) 
7.5 Let ?? (?? ,?? )=?? ?? +?? ???? +?? ?? ?? +?? ?? +?? . At what points will ?? (?? ,?? ) be maximum or 
minimum? 
(2013 : 10 Marks) 
 Solution: 
?? (?? ,?? )=?? 2
+4???? +3?? 2
+?? 3
+1 
For stationary points 
??? ??? ?=0;
??? ??? =0 
????????????????????????????????????????????????4?? +6?? +3?? 2
?=0????????????????????????????????????????????????????????????????????????????????????????????(??)
·2?? +4?? ?=0??? =-2?? ????????????????????????????????????????????????????????????????????(???? )
 
 
From (i) and (ii) 
3?? 2
-2?? =0??? =0;?? =
2
3
 
So, (0,0) and (
2
3
,
-4
3
) are stationary points. 
To test for maxima or minima we calculate 2 and partial derivative 
??????????????????????????????????????????????????
?
2
?? ??? 2
=6+6?? ;?
?
2
?? ??? 2
=2;?
?
2
?? ??? ??? =4
??????????????
?
2
?? ??? 2
×
?
2
?? ??? 2
-(
?
2
?? ??? ??? )
2
=2(6+6?? )-4
2
???????????????????????????????????????????????????????????=12?? -4
????????????????????????????????????????????? -?? 2
=-4<0 at (0,0)
 
So, no extremum at this point and ???? -?? 2
=4>0 at (
2
3
,
-4
3
) and since 
?
2
?? ??? 2
=2>0 so 
minima at (
2
3
,
-4
3
) . 
 
Read More
387 videos|203 docs

Top Courses for UPSC

FAQs on Functions of Several (Two or Three) Variables - Mathematics Optional Notes for UPSC

1. What are the key concepts to understand in Functions of Several Variables for the UPSC exam?
Ans. Key concepts to understand in Functions of Several Variables for the UPSC exam include partial derivatives, gradient, critical points, optimization, and Lagrange multipliers.
2. How are partial derivatives calculated in Functions of Several Variables for the UPSC exam?
Ans. Partial derivatives in Functions of Several Variables are calculated by taking the derivative of a function with respect to one variable while holding all other variables constant.
3. What is the significance of the gradient in Functions of Several Variables for the UPSC exam?
Ans. The gradient in Functions of Several Variables indicates the direction of steepest ascent of a function at a given point and is crucial for optimization problems.
4. How are critical points identified and used in Functions of Several Variables for the UPSC exam?
Ans. Critical points in Functions of Several Variables are identified by finding where the gradient is zero and are used to determine local extrema of a function.
5. How do Lagrange multipliers come into play in Functions of Several Variables for the UPSC exam?
Ans. Lagrange multipliers are utilized in Functions of Several Variables to optimize a function subject to one or more constraints by incorporating the constraints into the optimization process.
387 videos|203 docs
Download as PDF
Explore Courses for UPSC exam

Top Courses for UPSC

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Semester Notes

,

ppt

,

pdf

,

Extra Questions

,

Important questions

,

mock tests for examination

,

Objective type Questions

,

Viva Questions

,

Functions of Several (Two or Three) Variables | Mathematics Optional Notes for UPSC

,

Sample Paper

,

Functions of Several (Two or Three) Variables | Mathematics Optional Notes for UPSC

,

Free

,

study material

,

MCQs

,

Exam

,

Summary

,

past year papers

,

practice quizzes

,

video lectures

,

shortcuts and tricks

,

Functions of Several (Two or Three) Variables | Mathematics Optional Notes for UPSC

,

Previous Year Questions with Solutions

;