UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Canonical Form

Canonical Form | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
5. Canonical Form 
5.1 Reduce the following ?? nd 
 order partial differential equation into canonical form 
and find its general solution. 
?? ?? ????
+?? ?? ?? ?? ????
-?? ?? =?? 
(2010 : 20 Marks) 
Solution: 
Let the characteristic variables be ?? and ?? . 
Now, the given equation is 
?? ?? ????
+2?? 2
?? ????
-4
?? =0 
??? -characteristic equation is 
?? ?? 2
+2?? 2
?? =0
????? (???? +2?? 2
)=0
????? =0 or ?? =-2?? For ?? =0:?
????
????
+0=0
????? = Constant =?? For ?? =-2?? :?
????
????
-2?? =0
??????? =2?????? ????? =?? 2
+?? ? ( ?? is a constant) 
????? -?? 2
=?? =?? ????? =?? and ?? =?? -?? 2
 Now, 
?? ????
=
?
2
?? ??? 2
×(
??? ??? )
2
+(
?
2
?? ??? 2
)×(
??? ??? )
2
+
2?
2
?? ??? ??? ×
??? ??? ×
??? ??? +
??? ??? ×
?
2
?? ??? 2
+
??? ??? ×
?
2
?? ??? 2
?
2
?? ??? 2
=
?
2
?? ??? 2
×0+
?
2
?? ??? 2
×4?? 2
+
2?
2
?? ??? ??? ×0+
??? ??? ×0+
??? ??? ×(-2)
???
?
2
?? ??? 2
=4?? 2
?
2
?? ??? 2
-2
??? ??? =?? ????
?? ????
=
?
2
?? ??? 2
×
??? ??? ×
??? ??? +
?
2
?? ??? 2
×
??? ??? ×
??? ??? +
??? ??? ×
?
2
?? ??? ??? +
??? ??? ×
?
2
?? ??? ??? +
?
2
?? ??? ??? (
??? ??? ??? ??? +
??? ??? ??? ??? )
?=0+
?
2
?? ??? 2
×(-2?? )+0+0+
?
2
?? ??? ??? ×1×(-2?? )
 
Page 2


Edurev123 
5. Canonical Form 
5.1 Reduce the following ?? nd 
 order partial differential equation into canonical form 
and find its general solution. 
?? ?? ????
+?? ?? ?? ?? ????
-?? ?? =?? 
(2010 : 20 Marks) 
Solution: 
Let the characteristic variables be ?? and ?? . 
Now, the given equation is 
?? ?? ????
+2?? 2
?? ????
-4
?? =0 
??? -characteristic equation is 
?? ?? 2
+2?? 2
?? =0
????? (???? +2?? 2
)=0
????? =0 or ?? =-2?? For ?? =0:?
????
????
+0=0
????? = Constant =?? For ?? =-2?? :?
????
????
-2?? =0
??????? =2?????? ????? =?? 2
+?? ? ( ?? is a constant) 
????? -?? 2
=?? =?? ????? =?? and ?? =?? -?? 2
 Now, 
?? ????
=
?
2
?? ??? 2
×(
??? ??? )
2
+(
?
2
?? ??? 2
)×(
??? ??? )
2
+
2?
2
?? ??? ??? ×
??? ??? ×
??? ??? +
??? ??? ×
?
2
?? ??? 2
+
??? ??? ×
?
2
?? ??? 2
?
2
?? ??? 2
=
?
2
?? ??? 2
×0+
?
2
?? ??? 2
×4?? 2
+
2?
2
?? ??? ??? ×0+
??? ??? ×0+
??? ??? ×(-2)
???
?
2
?? ??? 2
=4?? 2
?
2
?? ??? 2
-2
??? ??? =?? ????
?? ????
=
?
2
?? ??? 2
×
??? ??? ×
??? ??? +
?
2
?? ??? 2
×
??? ??? ×
??? ??? +
??? ??? ×
?
2
?? ??? ??? +
??? ??? ×
?
2
?? ??? ??? +
?
2
?? ??? ??? (
??? ??? ??? ??? +
??? ??? ??? ??? )
?=0+
?
2
?? ??? 2
×(-2?? )+0+0+
?
2
?? ??? ??? ×1×(-2?? )
 
???? ????
?=-2?? ?
2
?? ?? ?? 2
-2?? ?
2
?? ??? ??? (???? )
?? ?? ?=
??? ??? ×
??? ??? +
??? ??? ×
??? ??? =0-2?? ??? ??? =-2?? ??? ??? (?????? )
 
Using values in equations (i), (ii) and (iii), we get 
???
?
2
?? ??? ??? =0, which is the canonical form of the equation. 
 Now, 
?
2
?? ??? ??? =0
??? ??? =?? (?? )
?? =???? (?? )????
?=???? ?
(?? -?? 2
)?? ''
(?? -?? 2
)
 
which is the required solution. 
5.2 Reduce the equation: 
?? ?? ?? ?? ?? ?? ?? +(?? +?? )
?? ?? ?? ?? ?? ?? ?? +?? ?? ?? ?? ?? ?? ?? =?? 
to its canonical form where ?? ??? : 
(2013 : 10 Marks) 
Solution: 
Comparing the equation to 
???? +???? +???? ?=0 (??)
?? ?=?? ,?? =(?? +?? ),?? =?? ?? 2
-4???? ?=(?? +?? )
2
-4???? =(?? -?? )
2
>0 for ?? ??? 
So, the equation is hyperbolic in form. 
The ?? -quadratic is 
?? 2
?? +???? +?? ?=0??? 2
?? +(?? +?? )?? +?? =0
??(???? +?? )(?? +1)?=0??? =-
?? ?? ,-1
 
So, the corresponding quadratic equations are : 
Page 3


Edurev123 
5. Canonical Form 
5.1 Reduce the following ?? nd 
 order partial differential equation into canonical form 
and find its general solution. 
?? ?? ????
+?? ?? ?? ?? ????
-?? ?? =?? 
(2010 : 20 Marks) 
Solution: 
Let the characteristic variables be ?? and ?? . 
Now, the given equation is 
?? ?? ????
+2?? 2
?? ????
-4
?? =0 
??? -characteristic equation is 
?? ?? 2
+2?? 2
?? =0
????? (???? +2?? 2
)=0
????? =0 or ?? =-2?? For ?? =0:?
????
????
+0=0
????? = Constant =?? For ?? =-2?? :?
????
????
-2?? =0
??????? =2?????? ????? =?? 2
+?? ? ( ?? is a constant) 
????? -?? 2
=?? =?? ????? =?? and ?? =?? -?? 2
 Now, 
?? ????
=
?
2
?? ??? 2
×(
??? ??? )
2
+(
?
2
?? ??? 2
)×(
??? ??? )
2
+
2?
2
?? ??? ??? ×
??? ??? ×
??? ??? +
??? ??? ×
?
2
?? ??? 2
+
??? ??? ×
?
2
?? ??? 2
?
2
?? ??? 2
=
?
2
?? ??? 2
×0+
?
2
?? ??? 2
×4?? 2
+
2?
2
?? ??? ??? ×0+
??? ??? ×0+
??? ??? ×(-2)
???
?
2
?? ??? 2
=4?? 2
?
2
?? ??? 2
-2
??? ??? =?? ????
?? ????
=
?
2
?? ??? 2
×
??? ??? ×
??? ??? +
?
2
?? ??? 2
×
??? ??? ×
??? ??? +
??? ??? ×
?
2
?? ??? ??? +
??? ??? ×
?
2
?? ??? ??? +
?
2
?? ??? ??? (
??? ??? ??? ??? +
??? ??? ??? ??? )
?=0+
?
2
?? ??? 2
×(-2?? )+0+0+
?
2
?? ??? ??? ×1×(-2?? )
 
???? ????
?=-2?? ?
2
?? ?? ?? 2
-2?? ?
2
?? ??? ??? (???? )
?? ?? ?=
??? ??? ×
??? ??? +
??? ??? ×
??? ??? =0-2?? ??? ??? =-2?? ??? ??? (?????? )
 
Using values in equations (i), (ii) and (iii), we get 
???
?
2
?? ??? ??? =0, which is the canonical form of the equation. 
 Now, 
?
2
?? ??? ??? =0
??? ??? =?? (?? )
?? =???? (?? )????
?=???? ?
(?? -?? 2
)?? ''
(?? -?? 2
)
 
which is the required solution. 
5.2 Reduce the equation: 
?? ?? ?? ?? ?? ?? ?? +(?? +?? )
?? ?? ?? ?? ?? ?? ?? +?? ?? ?? ?? ?? ?? ?? =?? 
to its canonical form where ?? ??? : 
(2013 : 10 Marks) 
Solution: 
Comparing the equation to 
???? +???? +???? ?=0 (??)
?? ?=?? ,?? =(?? +?? ),?? =?? ?? 2
-4???? ?=(?? +?? )
2
-4???? =(?? -?? )
2
>0 for ?? ??? 
So, the equation is hyperbolic in form. 
The ?? -quadratic is 
?? 2
?? +???? +?? ?=0??? 2
?? +(?? +?? )?? +?? =0
??(???? +?? )(?? +1)?=0??? =-
?? ?? ,-1
 
So, the corresponding quadratic equations are : 
????
????
+?? ?=0 and 
????
????
+?? 2
=0
????
????
-
?? ?? ?=0 and 
????
????
-1=0
???? 2
2
-
?? 2
?? ?=?? 1
 and ?? -?? =?? 2
?? ?=
1
2
(?? 2
-?? 2
);?? =?? -?? ?? ?=
??? ??? =
??? ??? ·
??? ??? +
??? ??? ·
??? ??? =-?? ??? ??? -
??? ??? ?? ?=
??? ??? =
??? ??? ·
??? ??? +
??? ??? ·
??? ??? =?? ??? ??? +
??? ??? 
?? ?=
?
2
?? ??? 2
=
?
??? (
??? ??? )=
?
??? (-?? ??? ??? -
??? ??? )
?=-
??? ??? -?? ?
??? ??? ??? -
?
??? (
??? ??? )
?=,-
??? ??? -?? [
?
2
?? ??? ·
??? ??? +
?
2
?? ??? ??? ·
??? ??? ]-[
?
2
?? ??? ??? ·
??? ??? +
?
2
?? ??? 2
·
??? ??? ]
?=-
??? ??? +?? 2
?
2
?? ??? 2
+2?? ?
2
?? ??? ??? +
?
2
?? ??? 2
?? ?=
?
2
?? ??? ??? =
?
??? (
??? ??? )=
?
??? (-?? ??? ??? -
??? ??? )
?=-?? [
?
2
?? ??? 2
·
??? ??? +
?
2
?? ??? ??? ·
??? ??? ]-[
?
2
?? ??? ??? ·
??? ??? +
?
2
?? ??? 2
·
??? ??? ]
?=-????
?
2
?? ??? 2
-(?? +?? )
?
2
?? ??? ??? -
?
2
?? ??? ?? ?=
?
2
?? ??? 2
=
?
??? (
??? ??? )=
?
??? [?? ??? ??? +
??? ??? ]
?=
??? ??? +?? 2
?
2
?? ??? 2
+2?? ?
2
?? ??? ??? +
?
2
?? ??? 2
 
Substituting in (i), we have 
{4???? -(?? +?? )
2
}
?
2
?? ??? ??? -?? ??? ??? +?? ??? ??? =0
?(?? -?? )
2
?
2
?? ??? ??? +(?? -?? )
??? ??? =0
 
which is the canonical form. 
[Note : In hyperbolic form only coefficient of 
?
2
?? ??? ??? remains and this can be used]. 
5.3 Reduce the equation 
?? ?? ?? ?? ?? ?? =?? ?? ?? ?? ?? ?? ?? ?? to Canonical form. 
Page 4


Edurev123 
5. Canonical Form 
5.1 Reduce the following ?? nd 
 order partial differential equation into canonical form 
and find its general solution. 
?? ?? ????
+?? ?? ?? ?? ????
-?? ?? =?? 
(2010 : 20 Marks) 
Solution: 
Let the characteristic variables be ?? and ?? . 
Now, the given equation is 
?? ?? ????
+2?? 2
?? ????
-4
?? =0 
??? -characteristic equation is 
?? ?? 2
+2?? 2
?? =0
????? (???? +2?? 2
)=0
????? =0 or ?? =-2?? For ?? =0:?
????
????
+0=0
????? = Constant =?? For ?? =-2?? :?
????
????
-2?? =0
??????? =2?????? ????? =?? 2
+?? ? ( ?? is a constant) 
????? -?? 2
=?? =?? ????? =?? and ?? =?? -?? 2
 Now, 
?? ????
=
?
2
?? ??? 2
×(
??? ??? )
2
+(
?
2
?? ??? 2
)×(
??? ??? )
2
+
2?
2
?? ??? ??? ×
??? ??? ×
??? ??? +
??? ??? ×
?
2
?? ??? 2
+
??? ??? ×
?
2
?? ??? 2
?
2
?? ??? 2
=
?
2
?? ??? 2
×0+
?
2
?? ??? 2
×4?? 2
+
2?
2
?? ??? ??? ×0+
??? ??? ×0+
??? ??? ×(-2)
???
?
2
?? ??? 2
=4?? 2
?
2
?? ??? 2
-2
??? ??? =?? ????
?? ????
=
?
2
?? ??? 2
×
??? ??? ×
??? ??? +
?
2
?? ??? 2
×
??? ??? ×
??? ??? +
??? ??? ×
?
2
?? ??? ??? +
??? ??? ×
?
2
?? ??? ??? +
?
2
?? ??? ??? (
??? ??? ??? ??? +
??? ??? ??? ??? )
?=0+
?
2
?? ??? 2
×(-2?? )+0+0+
?
2
?? ??? ??? ×1×(-2?? )
 
???? ????
?=-2?? ?
2
?? ?? ?? 2
-2?? ?
2
?? ??? ??? (???? )
?? ?? ?=
??? ??? ×
??? ??? +
??? ??? ×
??? ??? =0-2?? ??? ??? =-2?? ??? ??? (?????? )
 
Using values in equations (i), (ii) and (iii), we get 
???
?
2
?? ??? ??? =0, which is the canonical form of the equation. 
 Now, 
?
2
?? ??? ??? =0
??? ??? =?? (?? )
?? =???? (?? )????
?=???? ?
(?? -?? 2
)?? ''
(?? -?? 2
)
 
which is the required solution. 
5.2 Reduce the equation: 
?? ?? ?? ?? ?? ?? ?? +(?? +?? )
?? ?? ?? ?? ?? ?? ?? +?? ?? ?? ?? ?? ?? ?? =?? 
to its canonical form where ?? ??? : 
(2013 : 10 Marks) 
Solution: 
Comparing the equation to 
???? +???? +???? ?=0 (??)
?? ?=?? ,?? =(?? +?? ),?? =?? ?? 2
-4???? ?=(?? +?? )
2
-4???? =(?? -?? )
2
>0 for ?? ??? 
So, the equation is hyperbolic in form. 
The ?? -quadratic is 
?? 2
?? +???? +?? ?=0??? 2
?? +(?? +?? )?? +?? =0
??(???? +?? )(?? +1)?=0??? =-
?? ?? ,-1
 
So, the corresponding quadratic equations are : 
????
????
+?? ?=0 and 
????
????
+?? 2
=0
????
????
-
?? ?? ?=0 and 
????
????
-1=0
???? 2
2
-
?? 2
?? ?=?? 1
 and ?? -?? =?? 2
?? ?=
1
2
(?? 2
-?? 2
);?? =?? -?? ?? ?=
??? ??? =
??? ??? ·
??? ??? +
??? ??? ·
??? ??? =-?? ??? ??? -
??? ??? ?? ?=
??? ??? =
??? ??? ·
??? ??? +
??? ??? ·
??? ??? =?? ??? ??? +
??? ??? 
?? ?=
?
2
?? ??? 2
=
?
??? (
??? ??? )=
?
??? (-?? ??? ??? -
??? ??? )
?=-
??? ??? -?? ?
??? ??? ??? -
?
??? (
??? ??? )
?=,-
??? ??? -?? [
?
2
?? ??? ·
??? ??? +
?
2
?? ??? ??? ·
??? ??? ]-[
?
2
?? ??? ??? ·
??? ??? +
?
2
?? ??? 2
·
??? ??? ]
?=-
??? ??? +?? 2
?
2
?? ??? 2
+2?? ?
2
?? ??? ??? +
?
2
?? ??? 2
?? ?=
?
2
?? ??? ??? =
?
??? (
??? ??? )=
?
??? (-?? ??? ??? -
??? ??? )
?=-?? [
?
2
?? ??? 2
·
??? ??? +
?
2
?? ??? ??? ·
??? ??? ]-[
?
2
?? ??? ??? ·
??? ??? +
?
2
?? ??? 2
·
??? ??? ]
?=-????
?
2
?? ??? 2
-(?? +?? )
?
2
?? ??? ??? -
?
2
?? ??? ?? ?=
?
2
?? ??? 2
=
?
??? (
??? ??? )=
?
??? [?? ??? ??? +
??? ??? ]
?=
??? ??? +?? 2
?
2
?? ??? 2
+2?? ?
2
?? ??? ??? +
?
2
?? ??? 2
 
Substituting in (i), we have 
{4???? -(?? +?? )
2
}
?
2
?? ??? ??? -?? ??? ??? +?? ??? ??? =0
?(?? -?? )
2
?
2
?? ??? ??? +(?? -?? )
??? ??? =0
 
which is the canonical form. 
[Note : In hyperbolic form only coefficient of 
?
2
?? ??? ??? remains and this can be used]. 
5.3 Reduce the equation 
?? ?? ?? ?? ?? ?? =?? ?? ?? ?? ?? ?? ?? ?? to Canonical form. 
(2014: 15 marks) 
Solution: 
Let, the given equation, 
?
2
?? ??? 2
=
?? 2
?
2
?? ??? 2
(??) 
Re-writing the given equation becomes ?? -?? 2
?? =0 
comparing (i) with 
???? +5?? +?? ?? +?? (?? ,?? ,?? ,?? ,?? )=0 
We have, 
Now, the ?? -quadratic equation, 
?? =1,?? =0,?? =-?? 2
 
?? ?? 2
+5?? +7?=0
?? 2
-?? 1
?=0
???? ?=????
 
Here, ?? 1
=?? and ?? 2
=-?? (real & distinct roots) 
Hence, the characteristic equations. 
????
????
+?? 1
=0 and 
????
????
+?? 2
=0
????
????
+?? =0 and 
????
????
-?? =0
 
Integrating these two equations, we get 
?? +(
?? 2
2
)=?? 1
?? -(
?? 2
2
)=?? 2
 
Hence in order to reduce (i) to canonical form, we change ?? ,?? to ?? ,?? by taking. 
Page 5


Edurev123 
5. Canonical Form 
5.1 Reduce the following ?? nd 
 order partial differential equation into canonical form 
and find its general solution. 
?? ?? ????
+?? ?? ?? ?? ????
-?? ?? =?? 
(2010 : 20 Marks) 
Solution: 
Let the characteristic variables be ?? and ?? . 
Now, the given equation is 
?? ?? ????
+2?? 2
?? ????
-4
?? =0 
??? -characteristic equation is 
?? ?? 2
+2?? 2
?? =0
????? (???? +2?? 2
)=0
????? =0 or ?? =-2?? For ?? =0:?
????
????
+0=0
????? = Constant =?? For ?? =-2?? :?
????
????
-2?? =0
??????? =2?????? ????? =?? 2
+?? ? ( ?? is a constant) 
????? -?? 2
=?? =?? ????? =?? and ?? =?? -?? 2
 Now, 
?? ????
=
?
2
?? ??? 2
×(
??? ??? )
2
+(
?
2
?? ??? 2
)×(
??? ??? )
2
+
2?
2
?? ??? ??? ×
??? ??? ×
??? ??? +
??? ??? ×
?
2
?? ??? 2
+
??? ??? ×
?
2
?? ??? 2
?
2
?? ??? 2
=
?
2
?? ??? 2
×0+
?
2
?? ??? 2
×4?? 2
+
2?
2
?? ??? ??? ×0+
??? ??? ×0+
??? ??? ×(-2)
???
?
2
?? ??? 2
=4?? 2
?
2
?? ??? 2
-2
??? ??? =?? ????
?? ????
=
?
2
?? ??? 2
×
??? ??? ×
??? ??? +
?
2
?? ??? 2
×
??? ??? ×
??? ??? +
??? ??? ×
?
2
?? ??? ??? +
??? ??? ×
?
2
?? ??? ??? +
?
2
?? ??? ??? (
??? ??? ??? ??? +
??? ??? ??? ??? )
?=0+
?
2
?? ??? 2
×(-2?? )+0+0+
?
2
?? ??? ??? ×1×(-2?? )
 
???? ????
?=-2?? ?
2
?? ?? ?? 2
-2?? ?
2
?? ??? ??? (???? )
?? ?? ?=
??? ??? ×
??? ??? +
??? ??? ×
??? ??? =0-2?? ??? ??? =-2?? ??? ??? (?????? )
 
Using values in equations (i), (ii) and (iii), we get 
???
?
2
?? ??? ??? =0, which is the canonical form of the equation. 
 Now, 
?
2
?? ??? ??? =0
??? ??? =?? (?? )
?? =???? (?? )????
?=???? ?
(?? -?? 2
)?? ''
(?? -?? 2
)
 
which is the required solution. 
5.2 Reduce the equation: 
?? ?? ?? ?? ?? ?? ?? +(?? +?? )
?? ?? ?? ?? ?? ?? ?? +?? ?? ?? ?? ?? ?? ?? =?? 
to its canonical form where ?? ??? : 
(2013 : 10 Marks) 
Solution: 
Comparing the equation to 
???? +???? +???? ?=0 (??)
?? ?=?? ,?? =(?? +?? ),?? =?? ?? 2
-4???? ?=(?? +?? )
2
-4???? =(?? -?? )
2
>0 for ?? ??? 
So, the equation is hyperbolic in form. 
The ?? -quadratic is 
?? 2
?? +???? +?? ?=0??? 2
?? +(?? +?? )?? +?? =0
??(???? +?? )(?? +1)?=0??? =-
?? ?? ,-1
 
So, the corresponding quadratic equations are : 
????
????
+?? ?=0 and 
????
????
+?? 2
=0
????
????
-
?? ?? ?=0 and 
????
????
-1=0
???? 2
2
-
?? 2
?? ?=?? 1
 and ?? -?? =?? 2
?? ?=
1
2
(?? 2
-?? 2
);?? =?? -?? ?? ?=
??? ??? =
??? ??? ·
??? ??? +
??? ??? ·
??? ??? =-?? ??? ??? -
??? ??? ?? ?=
??? ??? =
??? ??? ·
??? ??? +
??? ??? ·
??? ??? =?? ??? ??? +
??? ??? 
?? ?=
?
2
?? ??? 2
=
?
??? (
??? ??? )=
?
??? (-?? ??? ??? -
??? ??? )
?=-
??? ??? -?? ?
??? ??? ??? -
?
??? (
??? ??? )
?=,-
??? ??? -?? [
?
2
?? ??? ·
??? ??? +
?
2
?? ??? ??? ·
??? ??? ]-[
?
2
?? ??? ??? ·
??? ??? +
?
2
?? ??? 2
·
??? ??? ]
?=-
??? ??? +?? 2
?
2
?? ??? 2
+2?? ?
2
?? ??? ??? +
?
2
?? ??? 2
?? ?=
?
2
?? ??? ??? =
?
??? (
??? ??? )=
?
??? (-?? ??? ??? -
??? ??? )
?=-?? [
?
2
?? ??? 2
·
??? ??? +
?
2
?? ??? ??? ·
??? ??? ]-[
?
2
?? ??? ??? ·
??? ??? +
?
2
?? ??? 2
·
??? ??? ]
?=-????
?
2
?? ??? 2
-(?? +?? )
?
2
?? ??? ??? -
?
2
?? ??? ?? ?=
?
2
?? ??? 2
=
?
??? (
??? ??? )=
?
??? [?? ??? ??? +
??? ??? ]
?=
??? ??? +?? 2
?
2
?? ??? 2
+2?? ?
2
?? ??? ??? +
?
2
?? ??? 2
 
Substituting in (i), we have 
{4???? -(?? +?? )
2
}
?
2
?? ??? ??? -?? ??? ??? +?? ??? ??? =0
?(?? -?? )
2
?
2
?? ??? ??? +(?? -?? )
??? ??? =0
 
which is the canonical form. 
[Note : In hyperbolic form only coefficient of 
?
2
?? ??? ??? remains and this can be used]. 
5.3 Reduce the equation 
?? ?? ?? ?? ?? ?? =?? ?? ?? ?? ?? ?? ?? ?? to Canonical form. 
(2014: 15 marks) 
Solution: 
Let, the given equation, 
?
2
?? ??? 2
=
?? 2
?
2
?? ??? 2
(??) 
Re-writing the given equation becomes ?? -?? 2
?? =0 
comparing (i) with 
???? +5?? +?? ?? +?? (?? ,?? ,?? ,?? ,?? )=0 
We have, 
Now, the ?? -quadratic equation, 
?? =1,?? =0,?? =-?? 2
 
?? ?? 2
+5?? +7?=0
?? 2
-?? 1
?=0
???? ?=????
 
Here, ?? 1
=?? and ?? 2
=-?? (real & distinct roots) 
Hence, the characteristic equations. 
????
????
+?? 1
=0 and 
????
????
+?? 2
=0
????
????
+?? =0 and 
????
????
-?? =0
 
Integrating these two equations, we get 
?? +(
?? 2
2
)=?? 1
?? -(
?? 2
2
)=?? 2
 
Hence in order to reduce (i) to canonical form, we change ?? ,?? to ?? ,?? by taking. 
?? ?=?? +
?? 2
2
 and ?? =?? -
?? 2
2
(???? )
?? ?=
??? ??? =
??? ??? ·
??? ??? +
??? ??? ·
??? ??? =
?? ??? ??? -?? ??? ??? ?? ?=?? (
??? ??? -
??? ??? ) (?????? )
?? ?=
??? ??? =
??? ??? ·
??? ??? +
??? ??? ·
??? ??? =
??? ??? +
??? ??? ???? ?=
?
2
?? ??? 2
=
?
??? (
??? ??? )=
?
??? {?? (
??? ??? -
??? ??? )}
???? ?=?? ?
??? (
??? ??? -
??? ??? )+1(
??? ??? -
??? ??? )
?=?? 2
[
?
2
?? ??? 2
-
2?
2
?? ??? ??? +
?
2
?? ??? 2
]+
??? ??? -
??? ??? =?? ?? ?=
?
2
?? ??? 2
=
?
??? (
??? ??? )=
?
??? (
??? ??? +
??? ??? )
?? ?=
?
??? (
?
??? )=(
?
??? +
?
??? )(
??? ??? +
??? ??? )
?=
?
2
?? ??? 2
+2
?
2
?? ??? ??? +
?
2
?? ??? 2
 
Put, the values of ?? &?? in equation (i) 
?? 2
[
?
2
?? ??? 2
-2
?
2
?? ??? ??? +
?
2
?? ??? 2
]+
??? ??? -
??? ??? -?? 2
[
?
2
?? ??? 2
+2
?
2
?? ??? ??? +
?
2
?? ??? 2
]=0 
or 
?
2
?? ??? ??? ?=
1
4?? 2
(
??? ??? -
??? ??? )
?
2
?? ??? ??? ?=
1
4(?? -?? )
(
??? ??? -
??? ??? )
 
Which is the required canonical form of the given equation. 
5.4 Reduce the second order partial differential equation : 
?? ?? ?? ?? ?? ?? ?? ?? -?? ????
?? ?? ?? ?? ?? ?? ?? +?? ?? ?? ?? ?? ?? ?? ?? +?? ?? ?? ?? ?? +?? ?? ?? ?? ?? =?? 
into canonical form. Hence, find its general solution. 
(2015 : 15 Marks) 
Solution: 
Given : ?? 2
?
2
?? ??? 2
-2????
?
2
?? ??? ??? +?? 2
?
2
?? ??? 2
+?? ??? ??? +?? ??? ??? =0 
Read More
387 videos|203 docs

Top Courses for UPSC

387 videos|203 docs
Download as PDF
Explore Courses for UPSC exam

Top Courses for UPSC

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

video lectures

,

Canonical Form | Mathematics Optional Notes for UPSC

,

Exam

,

Canonical Form | Mathematics Optional Notes for UPSC

,

past year papers

,

shortcuts and tricks

,

pdf

,

practice quizzes

,

Free

,

ppt

,

Previous Year Questions with Solutions

,

Viva Questions

,

Important questions

,

mock tests for examination

,

Extra Questions

,

MCQs

,

Canonical Form | Mathematics Optional Notes for UPSC

,

Summary

,

Objective type Questions

,

Semester Notes

,

Sample Paper

,

study material

;