Page 1
Edurev123
Mechanics and Fluid Dynamics
1. Generalised coordinate
1.1 A perfectly rough sphere of mass ?? and radius ?? , rests on the lowest point of
a fixed spherical cavity of radius ?? . To the highest point of the movable sphere is
attached a particle of mass ?? '
and the system is disturbed. Show that the
oscillations are the same as those of a simple pendulum of length
(?? -?? )
?? ?? '
+
?? ?? ?? ?? +?? '
(?? -
?? ?? )
(2009: 30 marks)
Solution:
Now,
?? ?? ''
?=?? ?? ''
???? ?=?? (?? +?? )
(?? -?? )?? ?=??
(?? -?? )???
?=?? ?? ?
Now, total kinetic energy, ?? can be written as
?? =
1
2
?? '
?? ?? 2
+
1
2
?? ?? ????
2
+
1
2
?? ????
?? 2
Now,
Page 2
Edurev123
Mechanics and Fluid Dynamics
1. Generalised coordinate
1.1 A perfectly rough sphere of mass ?? and radius ?? , rests on the lowest point of
a fixed spherical cavity of radius ?? . To the highest point of the movable sphere is
attached a particle of mass ?? '
and the system is disturbed. Show that the
oscillations are the same as those of a simple pendulum of length
(?? -?? )
?? ?? '
+
?? ?? ?? ?? +?? '
(?? -
?? ?? )
(2009: 30 marks)
Solution:
Now,
?? ?? ''
?=?? ?? ''
???? ?=?? (?? +?? )
(?? -?? )?? ?=??
(?? -?? )???
?=?? ?? ?
Now, total kinetic energy, ?? can be written as
?? =
1
2
?? '
?? ?? 2
+
1
2
?? ?? ????
2
+
1
2
?? ????
?? 2
Now,
?? ?? ?=(?? -?? )sin??? ????
?? =(?? -?? )cos??? ·???
?? ?? ?=(?? -?? )cos??? ????
?? =(?? -?? )-sin??? ·???
?? ?? 2
?=???
?? 2
+???
?? 2
=(?? -?? )
2
???
2
?? ????
?=
2
5
?? ?? 2
and ?? =?? ?
?? ?? ?=(?? -?? )sin??? +?? sin??? ???
?? ?=(?? -?? )cos??? ·???
+?? cos??? ·?? ?
?? ?? ?=(?? -?? )cos??? -?? cos??? ???
?? ?=(?? -?? )(-sin??? )·???
+?? sin??? ·?? ?
???
?? 2
+???
?? 2
?=?? ?? 2
=(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
?? (cos??? cos??? -sin??? sin??? )
?=(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
(?? ·†
?
-???? )? (ignoring the term ???? as it is very small)
?˜(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
Now potential energy,
Now lagrange,
?? =-???? (?? -?? )cos??? -?? '
?? {(?? -?? )cos??? -?? cos??? }
?? =?? -?? ?? =
1
2
?? '
{(?? -?? )
2
???
2
+?? 2
???
2
+2(?? -?? )?? ???
?? ?
}+
Take this point as zero potential
As
1
2
?? (?? -?? )
2
???
2
+
1
2
×
2
5
?? ?? 2
?? ?
2
+???? (?? -?? )cos??? +
?? '
?? {(?? -?? )cos??? -?? cos??? }
So, the generalised coordinate will only be one
Convert ?? to ?? .
Also
(?? -?? )???
=?? ?? ?
So,
?? =
1
2
?? '
{?? ?? ?
2
+?? 2
?? ?
2
+2?? 2
???
2
}+
1
2
?? ?? 2
?? ?
2
+
?? ?? 2
5
?? ?
2
+???? (?? -?? )cos??? ?+?? '
?? (?? -?? )cos??? -?? '
???? cos???
Page 3
Edurev123
Mechanics and Fluid Dynamics
1. Generalised coordinate
1.1 A perfectly rough sphere of mass ?? and radius ?? , rests on the lowest point of
a fixed spherical cavity of radius ?? . To the highest point of the movable sphere is
attached a particle of mass ?? '
and the system is disturbed. Show that the
oscillations are the same as those of a simple pendulum of length
(?? -?? )
?? ?? '
+
?? ?? ?? ?? +?? '
(?? -
?? ?? )
(2009: 30 marks)
Solution:
Now,
?? ?? ''
?=?? ?? ''
???? ?=?? (?? +?? )
(?? -?? )?? ?=??
(?? -?? )???
?=?? ?? ?
Now, total kinetic energy, ?? can be written as
?? =
1
2
?? '
?? ?? 2
+
1
2
?? ?? ????
2
+
1
2
?? ????
?? 2
Now,
?? ?? ?=(?? -?? )sin??? ????
?? =(?? -?? )cos??? ·???
?? ?? ?=(?? -?? )cos??? ????
?? =(?? -?? )-sin??? ·???
?? ?? 2
?=???
?? 2
+???
?? 2
=(?? -?? )
2
???
2
?? ????
?=
2
5
?? ?? 2
and ?? =?? ?
?? ?? ?=(?? -?? )sin??? +?? sin??? ???
?? ?=(?? -?? )cos??? ·???
+?? cos??? ·?? ?
?? ?? ?=(?? -?? )cos??? -?? cos??? ???
?? ?=(?? -?? )(-sin??? )·???
+?? sin??? ·?? ?
???
?? 2
+???
?? 2
?=?? ?? 2
=(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
?? (cos??? cos??? -sin??? sin??? )
?=(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
(?? ·†
?
-???? )? (ignoring the term ???? as it is very small)
?˜(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
Now potential energy,
Now lagrange,
?? =-???? (?? -?? )cos??? -?? '
?? {(?? -?? )cos??? -?? cos??? }
?? =?? -?? ?? =
1
2
?? '
{(?? -?? )
2
???
2
+?? 2
???
2
+2(?? -?? )?? ???
?? ?
}+
Take this point as zero potential
As
1
2
?? (?? -?? )
2
???
2
+
1
2
×
2
5
?? ?? 2
?? ?
2
+???? (?? -?? )cos??? +
?? '
?? {(?? -?? )cos??? -?? cos??? }
So, the generalised coordinate will only be one
Convert ?? to ?? .
Also
(?? -?? )???
=?? ?? ?
So,
?? =
1
2
?? '
{?? ?? ?
2
+?? 2
?? ?
2
+2?? 2
???
2
}+
1
2
?? ?? 2
?? ?
2
+
?? ?? 2
5
?? ?
2
+???? (?? -?? )cos??? ?+?? '
?? (?? -?? )cos??? -?? '
???? cos???
?? ?=?? ?
2
(2?? '
+
7?? 10
)?? 2
+(?? +?? '
)?? (?? -?? )cos?
????
?? -?? -?? '
???? cos??? ??? ??? ?
?=2?? ?
(2?? '
+
7?? 10
)?? 2
??? ??? ?
?=
?? (?? -?? )
(?? +?? '
)?? (?? -?? )(-1)sin?
????
(?? -?? )
+?? '
???? sin??? ?=-?? (?? +?? '
)?? sin?
????
(?? -?? )
+?? '
???? sin???
But
sin?
????
?? -?? ˜
????
?? -?? and sin??? ˜??
So,
??? ??? =-?? (?? +?? '
)?? ????
(?? -?? )
+?? '
??????
Now, using Lagrange's theorem
or
?? ????
(
??? ????
)-
??? ??? =0
?? ¨
(4?? '
+
7?? 5
)?? 2
+?? (?? +?? '
)
?????? ?? -?? -?? ?? '
????
?? ¨
(4?? '
+
7?? 5
)?? 2
+?????? [
?? (?? +?? '
)-?? '
(?? -?? )
?? -?? ]=0
?? ¨
+
?? ?? (4?? '
+
7?? 5
)?? 2
(
???(2?? -?? )+????
(?? -?? )
)?? =0
This is S.H.M. equation.
or
?? ¨
+???
2
?? =0
So,
?? 2
?=
?? {?? '
(2-
?? ?? )+?? }
(4?? '
+
7?? 5
)(?? -?? )
=
?? ?? ?? ?=
(4?? '
+
7?? 5
)(?? -?? )
?? +?? '
(2-
?? ?? )
Page 4
Edurev123
Mechanics and Fluid Dynamics
1. Generalised coordinate
1.1 A perfectly rough sphere of mass ?? and radius ?? , rests on the lowest point of
a fixed spherical cavity of radius ?? . To the highest point of the movable sphere is
attached a particle of mass ?? '
and the system is disturbed. Show that the
oscillations are the same as those of a simple pendulum of length
(?? -?? )
?? ?? '
+
?? ?? ?? ?? +?? '
(?? -
?? ?? )
(2009: 30 marks)
Solution:
Now,
?? ?? ''
?=?? ?? ''
???? ?=?? (?? +?? )
(?? -?? )?? ?=??
(?? -?? )???
?=?? ?? ?
Now, total kinetic energy, ?? can be written as
?? =
1
2
?? '
?? ?? 2
+
1
2
?? ?? ????
2
+
1
2
?? ????
?? 2
Now,
?? ?? ?=(?? -?? )sin??? ????
?? =(?? -?? )cos??? ·???
?? ?? ?=(?? -?? )cos??? ????
?? =(?? -?? )-sin??? ·???
?? ?? 2
?=???
?? 2
+???
?? 2
=(?? -?? )
2
???
2
?? ????
?=
2
5
?? ?? 2
and ?? =?? ?
?? ?? ?=(?? -?? )sin??? +?? sin??? ???
?? ?=(?? -?? )cos??? ·???
+?? cos??? ·?? ?
?? ?? ?=(?? -?? )cos??? -?? cos??? ???
?? ?=(?? -?? )(-sin??? )·???
+?? sin??? ·?? ?
???
?? 2
+???
?? 2
?=?? ?? 2
=(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
?? (cos??? cos??? -sin??? sin??? )
?=(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
(?? ·†
?
-???? )? (ignoring the term ???? as it is very small)
?˜(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
Now potential energy,
Now lagrange,
?? =-???? (?? -?? )cos??? -?? '
?? {(?? -?? )cos??? -?? cos??? }
?? =?? -?? ?? =
1
2
?? '
{(?? -?? )
2
???
2
+?? 2
???
2
+2(?? -?? )?? ???
?? ?
}+
Take this point as zero potential
As
1
2
?? (?? -?? )
2
???
2
+
1
2
×
2
5
?? ?? 2
?? ?
2
+???? (?? -?? )cos??? +
?? '
?? {(?? -?? )cos??? -?? cos??? }
So, the generalised coordinate will only be one
Convert ?? to ?? .
Also
(?? -?? )???
=?? ?? ?
So,
?? =
1
2
?? '
{?? ?? ?
2
+?? 2
?? ?
2
+2?? 2
???
2
}+
1
2
?? ?? 2
?? ?
2
+
?? ?? 2
5
?? ?
2
+???? (?? -?? )cos??? ?+?? '
?? (?? -?? )cos??? -?? '
???? cos???
?? ?=?? ?
2
(2?? '
+
7?? 10
)?? 2
+(?? +?? '
)?? (?? -?? )cos?
????
?? -?? -?? '
???? cos??? ??? ??? ?
?=2?? ?
(2?? '
+
7?? 10
)?? 2
??? ??? ?
?=
?? (?? -?? )
(?? +?? '
)?? (?? -?? )(-1)sin?
????
(?? -?? )
+?? '
???? sin??? ?=-?? (?? +?? '
)?? sin?
????
(?? -?? )
+?? '
???? sin???
But
sin?
????
?? -?? ˜
????
?? -?? and sin??? ˜??
So,
??? ??? =-?? (?? +?? '
)?? ????
(?? -?? )
+?? '
??????
Now, using Lagrange's theorem
or
?? ????
(
??? ????
)-
??? ??? =0
?? ¨
(4?? '
+
7?? 5
)?? 2
+?? (?? +?? '
)
?????? ?? -?? -?? ?? '
????
?? ¨
(4?? '
+
7?? 5
)?? 2
+?????? [
?? (?? +?? '
)-?? '
(?? -?? )
?? -?? ]=0
?? ¨
+
?? ?? (4?? '
+
7?? 5
)?? 2
(
???(2?? -?? )+????
(?? -?? )
)?? =0
This is S.H.M. equation.
or
?? ¨
+???
2
?? =0
So,
?? 2
?=
?? {?? '
(2-
?? ?? )+?? }
(4?? '
+
7?? 5
)(?? -?? )
=
?? ?? ?? ?=
(4?? '
+
7?? 5
)(?? -?? )
?? +?? '
(2-
?? ?? )
or,
So, oscillations are the same as those of a simple pendulum of above length
?? =
(4?? '
+
7?? 5
)(?? -?? )
?? +?? '
(2-
?? ?? )
1.2 A sphere of radius a and mass ?? rolls down a rough plane inclined at an angle
?? to the horizontal. If ?? be the distance of the point of contact of sphere from a
fixed point on the plane, find the acceleration by using Hamilton's equations.
(2010 : 30 Marks)
Solution:
Figure-1 below depicts the situation given in problem.
?? ? Radius of gyration of given sphere
Kinetic energy,
?? ?=
1
2
?? (???
2
+?? 2
???
2
)
?=
1
2
?? (???
2
+
2
5
?? 2
???
2
)
?=
1
2
?? (???
2
+
2
5
???
2
)=
7
10
?? ???
2
Figure-1
(?? =
2
?? ?? 2
for sphere )
(In pure rolling, ??? =?? ???
)
Potential energy,
?? =-?????? sin
Page 5
Edurev123
Mechanics and Fluid Dynamics
1. Generalised coordinate
1.1 A perfectly rough sphere of mass ?? and radius ?? , rests on the lowest point of
a fixed spherical cavity of radius ?? . To the highest point of the movable sphere is
attached a particle of mass ?? '
and the system is disturbed. Show that the
oscillations are the same as those of a simple pendulum of length
(?? -?? )
?? ?? '
+
?? ?? ?? ?? +?? '
(?? -
?? ?? )
(2009: 30 marks)
Solution:
Now,
?? ?? ''
?=?? ?? ''
???? ?=?? (?? +?? )
(?? -?? )?? ?=??
(?? -?? )???
?=?? ?? ?
Now, total kinetic energy, ?? can be written as
?? =
1
2
?? '
?? ?? 2
+
1
2
?? ?? ????
2
+
1
2
?? ????
?? 2
Now,
?? ?? ?=(?? -?? )sin??? ????
?? =(?? -?? )cos??? ·???
?? ?? ?=(?? -?? )cos??? ????
?? =(?? -?? )-sin??? ·???
?? ?? 2
?=???
?? 2
+???
?? 2
=(?? -?? )
2
???
2
?? ????
?=
2
5
?? ?? 2
and ?? =?? ?
?? ?? ?=(?? -?? )sin??? +?? sin??? ???
?? ?=(?? -?? )cos??? ·???
+?? cos??? ·?? ?
?? ?? ?=(?? -?? )cos??? -?? cos??? ???
?? ?=(?? -?? )(-sin??? )·???
+?? sin??? ·?? ?
???
?? 2
+???
?? 2
?=?? ?? 2
=(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
?? (cos??? cos??? -sin??? sin??? )
?=(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
(?? ·†
?
-???? )? (ignoring the term ???? as it is very small)
?˜(?? -?? )
2
???
2
+?? 2
?? ?
2
+2(?? -?? )???
?? ?
Now potential energy,
Now lagrange,
?? =-???? (?? -?? )cos??? -?? '
?? {(?? -?? )cos??? -?? cos??? }
?? =?? -?? ?? =
1
2
?? '
{(?? -?? )
2
???
2
+?? 2
???
2
+2(?? -?? )?? ???
?? ?
}+
Take this point as zero potential
As
1
2
?? (?? -?? )
2
???
2
+
1
2
×
2
5
?? ?? 2
?? ?
2
+???? (?? -?? )cos??? +
?? '
?? {(?? -?? )cos??? -?? cos??? }
So, the generalised coordinate will only be one
Convert ?? to ?? .
Also
(?? -?? )???
=?? ?? ?
So,
?? =
1
2
?? '
{?? ?? ?
2
+?? 2
?? ?
2
+2?? 2
???
2
}+
1
2
?? ?? 2
?? ?
2
+
?? ?? 2
5
?? ?
2
+???? (?? -?? )cos??? ?+?? '
?? (?? -?? )cos??? -?? '
???? cos???
?? ?=?? ?
2
(2?? '
+
7?? 10
)?? 2
+(?? +?? '
)?? (?? -?? )cos?
????
?? -?? -?? '
???? cos??? ??? ??? ?
?=2?? ?
(2?? '
+
7?? 10
)?? 2
??? ??? ?
?=
?? (?? -?? )
(?? +?? '
)?? (?? -?? )(-1)sin?
????
(?? -?? )
+?? '
???? sin??? ?=-?? (?? +?? '
)?? sin?
????
(?? -?? )
+?? '
???? sin???
But
sin?
????
?? -?? ˜
????
?? -?? and sin??? ˜??
So,
??? ??? =-?? (?? +?? '
)?? ????
(?? -?? )
+?? '
??????
Now, using Lagrange's theorem
or
?? ????
(
??? ????
)-
??? ??? =0
?? ¨
(4?? '
+
7?? 5
)?? 2
+?? (?? +?? '
)
?????? ?? -?? -?? ?? '
????
?? ¨
(4?? '
+
7?? 5
)?? 2
+?????? [
?? (?? +?? '
)-?? '
(?? -?? )
?? -?? ]=0
?? ¨
+
?? ?? (4?? '
+
7?? 5
)?? 2
(
???(2?? -?? )+????
(?? -?? )
)?? =0
This is S.H.M. equation.
or
?? ¨
+???
2
?? =0
So,
?? 2
?=
?? {?? '
(2-
?? ?? )+?? }
(4?? '
+
7?? 5
)(?? -?? )
=
?? ?? ?? ?=
(4?? '
+
7?? 5
)(?? -?? )
?? +?? '
(2-
?? ?? )
or,
So, oscillations are the same as those of a simple pendulum of above length
?? =
(4?? '
+
7?? 5
)(?? -?? )
?? +?? '
(2-
?? ?? )
1.2 A sphere of radius a and mass ?? rolls down a rough plane inclined at an angle
?? to the horizontal. If ?? be the distance of the point of contact of sphere from a
fixed point on the plane, find the acceleration by using Hamilton's equations.
(2010 : 30 Marks)
Solution:
Figure-1 below depicts the situation given in problem.
?? ? Radius of gyration of given sphere
Kinetic energy,
?? ?=
1
2
?? (???
2
+?? 2
???
2
)
?=
1
2
?? (???
2
+
2
5
?? 2
???
2
)
?=
1
2
?? (???
2
+
2
5
???
2
)=
7
10
?? ???
2
Figure-1
(?? =
2
?? ?? 2
for sphere )
(In pure rolling, ??? =?? ???
)
Potential energy,
?? =-?????? sin
? ?? =?? -?? =
7
10
?? ???
2
+???? ?? sin??? Now, ?? ?? =
??? ????
=
7
10
?? ×2???=
7
5
?? ???
? ??? =
5?? ?? 7?? ? Hamiltonian, ?? =-?? +?? ?? ·??? =-
7
10
?? ???
2
-?????? sin??? +?? ?? ·
5?? ?? 7?? ? ?? =
-5?? ?? 2
14?? -?????? sin??? +
5?? ?? 2
7?? ? ?? =
5
14?? ?? ?? 2
-???? ?? sin??? ( Putting ???=
5?? ?? 7?? )
? One of the Hamiltonian's equation gives
???
?? ?=
-??? ??? =+???? sin??? ??
7
5
?? ??¨?=???? sin??? ????¨?=
5
7
?? sin???
? Acceleration of sphere is
5
7
?? sin??? .
1.3 Obtain the equations governing the motion of a spherical pendulum.
(2012 : 12 Marks)
Solution:
Let ' ?? ' be the mass of the bob of spherical pendulum, which can swing in any direction,
traces out a sphere of constant length ?? .
Using polar co-ordinates ?? and ?? , the kinetic energy,
and potential energy,
?? ?=
1
2
?? (???
2
+?? 2
???
2
+?? 2
sin
2
??? ?? ?
2
)
?? ?=-?????? cos???
For spherical pendulum, the length ' ?? ' is constant.
Read More