JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Solved Example: Straight Lines

Solved Example: Straight Lines | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


JEE Solved Example on Straight Lines 
JEE Mains 
Q1: The opposite angular points of a square are ( ?? , ?? ) and ( ?? , - ?? ) . Then the co-ordinates of other 
two points are 
(A) D( 
?? ?? ,
?? ?? ) , ?? ( -
?? ?? ,
?? ?? ) 
(B) ?? (
?? ?? ,
?? ?? ) , ?? (
?? ?? ,
?? ?? ) 
(C) ?? (
?? ?? ,
?? ?? ) , ?? ( -
?? ?? ,
?? ?? ) 
(D) None of these 
Ans: (C) 
Obviously, slope of AC = 5 / 2. 
Let ?? be the slope of a line inclined at an angle of 45
°
 to ???? , then tan ? 45
°
= ±
?? -
5
2
1 + ?? ·
5
2
? ?? = -
7
3
·
3
7
. 
Thus, let the slope of ???? or ???? be 3/7and that of ???? or ???? be -
7
3
. Then equation of ???? is 3x -
7y + 19 = 0. 
Also the equation of ???? is 7x + 3y - 4 = 0. 
On solving these equations, we get, B ( -
1
2
,
5
2
). 
Now let the coordinates of the vertex ?? be ( h , ?? ) . Since the middle points of ???? and ???? are same, 
therefore 
1
2
( ?? -
1
2
) =
1
2
( 3 + 1 ) ? ?? =
9
2
,
1
2
( ?? +
5
2
) =
1
2
( 4 - 1 )
? ? ?? =
1
2
. Hence, ?? = (
9
2
,
1
2
) .
 
 
Q2: If the lines ?? = ?? ?? + ?? and ?? ?? = ?? + ?? are equally inclined to the line ?? = ???? + ?? , then ?? = 
(A) 
?? + ?? v ?? ?? 
(B) 
?? - ?? v ?? ?? 
(C) 
?? ± ?? v ?? ?? 
(D) 
?? ± ?? v ?? ?? 
Ans: (D) 
?? 1
= 3 , ?? 2
=
1
2
 and ?? 3
= ?? 
Let the angle between first and third line is ?? , and between second and third is ?? 2
, then 
Page 2


JEE Solved Example on Straight Lines 
JEE Mains 
Q1: The opposite angular points of a square are ( ?? , ?? ) and ( ?? , - ?? ) . Then the co-ordinates of other 
two points are 
(A) D( 
?? ?? ,
?? ?? ) , ?? ( -
?? ?? ,
?? ?? ) 
(B) ?? (
?? ?? ,
?? ?? ) , ?? (
?? ?? ,
?? ?? ) 
(C) ?? (
?? ?? ,
?? ?? ) , ?? ( -
?? ?? ,
?? ?? ) 
(D) None of these 
Ans: (C) 
Obviously, slope of AC = 5 / 2. 
Let ?? be the slope of a line inclined at an angle of 45
°
 to ???? , then tan ? 45
°
= ±
?? -
5
2
1 + ?? ·
5
2
? ?? = -
7
3
·
3
7
. 
Thus, let the slope of ???? or ???? be 3/7and that of ???? or ???? be -
7
3
. Then equation of ???? is 3x -
7y + 19 = 0. 
Also the equation of ???? is 7x + 3y - 4 = 0. 
On solving these equations, we get, B ( -
1
2
,
5
2
). 
Now let the coordinates of the vertex ?? be ( h , ?? ) . Since the middle points of ???? and ???? are same, 
therefore 
1
2
( ?? -
1
2
) =
1
2
( 3 + 1 ) ? ?? =
9
2
,
1
2
( ?? +
5
2
) =
1
2
( 4 - 1 )
? ? ?? =
1
2
. Hence, ?? = (
9
2
,
1
2
) .
 
 
Q2: If the lines ?? = ?? ?? + ?? and ?? ?? = ?? + ?? are equally inclined to the line ?? = ???? + ?? , then ?? = 
(A) 
?? + ?? v ?? ?? 
(B) 
?? - ?? v ?? ?? 
(C) 
?? ± ?? v ?? ?? 
(D) 
?? ± ?? v ?? ?? 
Ans: (D) 
?? 1
= 3 , ?? 2
=
1
2
 and ?? 3
= ?? 
Let the angle between first and third line is ?? , and between second and third is ?? 2
, then 
tan ? ?? 1
=
3 - ?? 1 + 3 ?? and tan ? ?? 2
=
?? -
1
2
1 +
?? 2
 
But ?? 1
= ?? 2
? ? ?
3 - ?? 1 + 3 ?? =
?? -
1
2
1 +
?? 2
 
? ? 7 ?? 2
- 2 ?? - 7 = 0 ? ?? =
1 ± 5 v 2
7
 
 
Q3: Let ?? ( - ?? , ?? ) , ?? ( ?? , ?? ) and ?? ( ?? , ?? v ?? ) be three points. Then the equation of the bisector of the 
angle ???? ?? is 
(A) 
v ?? ?? ?? + ?? = ?? 
(B) ?? + v ?? ?? = ?? 
(C) v ?? ?? + ?? = ?? 
(D) ?? +
v ?? ?? ?? = ?? 
 
Ans: (C) 
Slope of QR =
3 v 3 - 0
3 - 0
= v 3 i.e., ?? = 60
°
 
Clearly, ? ?????? = 120
°
 
???? is the angle bisector of the angle, so line ???? makes 120
°
 with the positive direction of ?? -axis. 
Therefore, equation of the bisector of ? ?????? is ?? = tan ? 120
°
?? or ?? = v 3 ?? i.e., v 3 ?? + ?? = 0. 
 
Q4: If for a variable line 
?? ?? +
?? ?? = ?? , the condition 
?? ?? ?? +
?? ?? ?? =
?? ?? ?? ? ( ?? is a constant) is satisfied, then 
locus of foot of perpendicular drawn from origin to the line is 
(A) ?? ?? + ?? ?? = ?? ?? / ?? 
(B) ?? ?? + ?? ?? = ?? ?? ?? 
(C) ?? ?? + ?? ?? = ?? ?? 
(D) ?? ?? - ?? ?? = ?? ?? 
Ans: (C) 
Equation of perpendicular drawn from origin to the line 
?? ?? +
?? ?? = 1 is ?? - 0 =
?? ?? ( ?? - 0 ) 
[ ? m of given line =
- ?? ?? , ? m of perpendicular =
?? ?? ] 
Page 3


JEE Solved Example on Straight Lines 
JEE Mains 
Q1: The opposite angular points of a square are ( ?? , ?? ) and ( ?? , - ?? ) . Then the co-ordinates of other 
two points are 
(A) D( 
?? ?? ,
?? ?? ) , ?? ( -
?? ?? ,
?? ?? ) 
(B) ?? (
?? ?? ,
?? ?? ) , ?? (
?? ?? ,
?? ?? ) 
(C) ?? (
?? ?? ,
?? ?? ) , ?? ( -
?? ?? ,
?? ?? ) 
(D) None of these 
Ans: (C) 
Obviously, slope of AC = 5 / 2. 
Let ?? be the slope of a line inclined at an angle of 45
°
 to ???? , then tan ? 45
°
= ±
?? -
5
2
1 + ?? ·
5
2
? ?? = -
7
3
·
3
7
. 
Thus, let the slope of ???? or ???? be 3/7and that of ???? or ???? be -
7
3
. Then equation of ???? is 3x -
7y + 19 = 0. 
Also the equation of ???? is 7x + 3y - 4 = 0. 
On solving these equations, we get, B ( -
1
2
,
5
2
). 
Now let the coordinates of the vertex ?? be ( h , ?? ) . Since the middle points of ???? and ???? are same, 
therefore 
1
2
( ?? -
1
2
) =
1
2
( 3 + 1 ) ? ?? =
9
2
,
1
2
( ?? +
5
2
) =
1
2
( 4 - 1 )
? ? ?? =
1
2
. Hence, ?? = (
9
2
,
1
2
) .
 
 
Q2: If the lines ?? = ?? ?? + ?? and ?? ?? = ?? + ?? are equally inclined to the line ?? = ???? + ?? , then ?? = 
(A) 
?? + ?? v ?? ?? 
(B) 
?? - ?? v ?? ?? 
(C) 
?? ± ?? v ?? ?? 
(D) 
?? ± ?? v ?? ?? 
Ans: (D) 
?? 1
= 3 , ?? 2
=
1
2
 and ?? 3
= ?? 
Let the angle between first and third line is ?? , and between second and third is ?? 2
, then 
tan ? ?? 1
=
3 - ?? 1 + 3 ?? and tan ? ?? 2
=
?? -
1
2
1 +
?? 2
 
But ?? 1
= ?? 2
? ? ?
3 - ?? 1 + 3 ?? =
?? -
1
2
1 +
?? 2
 
? ? 7 ?? 2
- 2 ?? - 7 = 0 ? ?? =
1 ± 5 v 2
7
 
 
Q3: Let ?? ( - ?? , ?? ) , ?? ( ?? , ?? ) and ?? ( ?? , ?? v ?? ) be three points. Then the equation of the bisector of the 
angle ???? ?? is 
(A) 
v ?? ?? ?? + ?? = ?? 
(B) ?? + v ?? ?? = ?? 
(C) v ?? ?? + ?? = ?? 
(D) ?? +
v ?? ?? ?? = ?? 
 
Ans: (C) 
Slope of QR =
3 v 3 - 0
3 - 0
= v 3 i.e., ?? = 60
°
 
Clearly, ? ?????? = 120
°
 
???? is the angle bisector of the angle, so line ???? makes 120
°
 with the positive direction of ?? -axis. 
Therefore, equation of the bisector of ? ?????? is ?? = tan ? 120
°
?? or ?? = v 3 ?? i.e., v 3 ?? + ?? = 0. 
 
Q4: If for a variable line 
?? ?? +
?? ?? = ?? , the condition 
?? ?? ?? +
?? ?? ?? =
?? ?? ?? ? ( ?? is a constant) is satisfied, then 
locus of foot of perpendicular drawn from origin to the line is 
(A) ?? ?? + ?? ?? = ?? ?? / ?? 
(B) ?? ?? + ?? ?? = ?? ?? ?? 
(C) ?? ?? + ?? ?? = ?? ?? 
(D) ?? ?? - ?? ?? = ?? ?? 
Ans: (C) 
Equation of perpendicular drawn from origin to the line 
?? ?? +
?? ?? = 1 is ?? - 0 =
?? ?? ( ?? - 0 ) 
[ ? m of given line =
- ?? ?? , ? m of perpendicular =
?? ?? ] 
? by - ax = 0 
?
?? ?? -
?? ?? = 0 
Now, the locus of foot of perpendicular is the intersection point of line 
?? ?? +
?? ?? = 1.  
and 
?? ?? -
?? ?? = 0. 
To find locus, squaring and adding (i) and (ii) 
(
?? ?? +
?? ?? )
2
+ (
?? ?? -
?? ?? )
2
= 1
? ?? 2
(
1
?? 2
+
1
?? 2
) + ?? 2
(
1
?? 2
+
1
?? 2
) = 1
? ?? 2
(
1
?? 2
) + ?? 2
(
1
?? 2
) = 1 , [ ?
1
?? 2
+
1
?? 2
=
1
?? 2
]
? ?? 2
+ ?? 2
= ?? 2
.
 
 
Q5: If the circle ?? ?? + ?? ?? - ?? ?? - ?? ?? + ?? = ?? does not touch or intersect the axes and the point 
( ?? , ?? ) lies inside the circle, then 
(A) ?? < ?? < ?? 
(B) ?? < ?? < ???? 
(C) ?? < ?? < ???? 
(D) none of these 
Ans: (C) 
The centre of the given circle is ( 2 , 3 ) and the radius = v 4 + 9 - ?? i.e. v 13 - k. 
Since the given circle does not touch or intersect the coordinate axes and the point 
( 2 , 2 ) lies inside the circle 
? ?? -cooridnate of centre > radius i.e. 2 > v 13 - k, 
?? -coordinate of centre > radius i.e. 3 > v 13 - k and 
4 + 4 - 8 - 12 + ?? < 0
? 4 > 13 - ?? , 9 > 13 - ?? and - 12 + ?? < 0
? ?? > 9 , ?? > 4 and ?? < 12 ? 9 < ?? < 12
 
 
Q6: If ?? ?? , ?? ?? be the inclination of tangents drawn from the point ?? to the circle ?? ?? + ?? ?? = ?? ?? with 
?? -axis, then the locus of ?? , it is given that ?? ???? ? ?? ?? + ?? ???? ? ?? ?? = ?? , is 
(A) ?? ( ?? ?? - ?? ?? ) = ?? ???? 
(B) ?? ( ?? ?? - ?? ?? ) = ?? ?? - ?? ?? 
(C) ?? ( ?? ?? - ?? ?? ) = ?? ???? 
(D) none of these 
Page 4


JEE Solved Example on Straight Lines 
JEE Mains 
Q1: The opposite angular points of a square are ( ?? , ?? ) and ( ?? , - ?? ) . Then the co-ordinates of other 
two points are 
(A) D( 
?? ?? ,
?? ?? ) , ?? ( -
?? ?? ,
?? ?? ) 
(B) ?? (
?? ?? ,
?? ?? ) , ?? (
?? ?? ,
?? ?? ) 
(C) ?? (
?? ?? ,
?? ?? ) , ?? ( -
?? ?? ,
?? ?? ) 
(D) None of these 
Ans: (C) 
Obviously, slope of AC = 5 / 2. 
Let ?? be the slope of a line inclined at an angle of 45
°
 to ???? , then tan ? 45
°
= ±
?? -
5
2
1 + ?? ·
5
2
? ?? = -
7
3
·
3
7
. 
Thus, let the slope of ???? or ???? be 3/7and that of ???? or ???? be -
7
3
. Then equation of ???? is 3x -
7y + 19 = 0. 
Also the equation of ???? is 7x + 3y - 4 = 0. 
On solving these equations, we get, B ( -
1
2
,
5
2
). 
Now let the coordinates of the vertex ?? be ( h , ?? ) . Since the middle points of ???? and ???? are same, 
therefore 
1
2
( ?? -
1
2
) =
1
2
( 3 + 1 ) ? ?? =
9
2
,
1
2
( ?? +
5
2
) =
1
2
( 4 - 1 )
? ? ?? =
1
2
. Hence, ?? = (
9
2
,
1
2
) .
 
 
Q2: If the lines ?? = ?? ?? + ?? and ?? ?? = ?? + ?? are equally inclined to the line ?? = ???? + ?? , then ?? = 
(A) 
?? + ?? v ?? ?? 
(B) 
?? - ?? v ?? ?? 
(C) 
?? ± ?? v ?? ?? 
(D) 
?? ± ?? v ?? ?? 
Ans: (D) 
?? 1
= 3 , ?? 2
=
1
2
 and ?? 3
= ?? 
Let the angle between first and third line is ?? , and between second and third is ?? 2
, then 
tan ? ?? 1
=
3 - ?? 1 + 3 ?? and tan ? ?? 2
=
?? -
1
2
1 +
?? 2
 
But ?? 1
= ?? 2
? ? ?
3 - ?? 1 + 3 ?? =
?? -
1
2
1 +
?? 2
 
? ? 7 ?? 2
- 2 ?? - 7 = 0 ? ?? =
1 ± 5 v 2
7
 
 
Q3: Let ?? ( - ?? , ?? ) , ?? ( ?? , ?? ) and ?? ( ?? , ?? v ?? ) be three points. Then the equation of the bisector of the 
angle ???? ?? is 
(A) 
v ?? ?? ?? + ?? = ?? 
(B) ?? + v ?? ?? = ?? 
(C) v ?? ?? + ?? = ?? 
(D) ?? +
v ?? ?? ?? = ?? 
 
Ans: (C) 
Slope of QR =
3 v 3 - 0
3 - 0
= v 3 i.e., ?? = 60
°
 
Clearly, ? ?????? = 120
°
 
???? is the angle bisector of the angle, so line ???? makes 120
°
 with the positive direction of ?? -axis. 
Therefore, equation of the bisector of ? ?????? is ?? = tan ? 120
°
?? or ?? = v 3 ?? i.e., v 3 ?? + ?? = 0. 
 
Q4: If for a variable line 
?? ?? +
?? ?? = ?? , the condition 
?? ?? ?? +
?? ?? ?? =
?? ?? ?? ? ( ?? is a constant) is satisfied, then 
locus of foot of perpendicular drawn from origin to the line is 
(A) ?? ?? + ?? ?? = ?? ?? / ?? 
(B) ?? ?? + ?? ?? = ?? ?? ?? 
(C) ?? ?? + ?? ?? = ?? ?? 
(D) ?? ?? - ?? ?? = ?? ?? 
Ans: (C) 
Equation of perpendicular drawn from origin to the line 
?? ?? +
?? ?? = 1 is ?? - 0 =
?? ?? ( ?? - 0 ) 
[ ? m of given line =
- ?? ?? , ? m of perpendicular =
?? ?? ] 
? by - ax = 0 
?
?? ?? -
?? ?? = 0 
Now, the locus of foot of perpendicular is the intersection point of line 
?? ?? +
?? ?? = 1.  
and 
?? ?? -
?? ?? = 0. 
To find locus, squaring and adding (i) and (ii) 
(
?? ?? +
?? ?? )
2
+ (
?? ?? -
?? ?? )
2
= 1
? ?? 2
(
1
?? 2
+
1
?? 2
) + ?? 2
(
1
?? 2
+
1
?? 2
) = 1
? ?? 2
(
1
?? 2
) + ?? 2
(
1
?? 2
) = 1 , [ ?
1
?? 2
+
1
?? 2
=
1
?? 2
]
? ?? 2
+ ?? 2
= ?? 2
.
 
 
Q5: If the circle ?? ?? + ?? ?? - ?? ?? - ?? ?? + ?? = ?? does not touch or intersect the axes and the point 
( ?? , ?? ) lies inside the circle, then 
(A) ?? < ?? < ?? 
(B) ?? < ?? < ???? 
(C) ?? < ?? < ???? 
(D) none of these 
Ans: (C) 
The centre of the given circle is ( 2 , 3 ) and the radius = v 4 + 9 - ?? i.e. v 13 - k. 
Since the given circle does not touch or intersect the coordinate axes and the point 
( 2 , 2 ) lies inside the circle 
? ?? -cooridnate of centre > radius i.e. 2 > v 13 - k, 
?? -coordinate of centre > radius i.e. 3 > v 13 - k and 
4 + 4 - 8 - 12 + ?? < 0
? 4 > 13 - ?? , 9 > 13 - ?? and - 12 + ?? < 0
? ?? > 9 , ?? > 4 and ?? < 12 ? 9 < ?? < 12
 
 
Q6: If ?? ?? , ?? ?? be the inclination of tangents drawn from the point ?? to the circle ?? ?? + ?? ?? = ?? ?? with 
?? -axis, then the locus of ?? , it is given that ?? ???? ? ?? ?? + ?? ???? ? ?? ?? = ?? , is 
(A) ?? ( ?? ?? - ?? ?? ) = ?? ???? 
(B) ?? ( ?? ?? - ?? ?? ) = ?? ?? - ?? ?? 
(C) ?? ( ?? ?? - ?? ?? ) = ?? ???? 
(D) none of these 
Ans: (C) 
Any tangent is ?? = ???? ± ?? v 1 + ?? 2
 
If it passes through ?? ( h , ?? ) , then ( ?? - ?? h )
2
= ?? 2
( 1 + ?? 2
) or ?? 2
( h
2
- ?? 2
) - 2 ?? h ?? +
( ?? 2
- ?? 2
) = 0, where ?? = tan ? ?? 
c ot ? ?? 1
+ c ot ? ?? 2
= ?? ?
1
?? 1
+
1
?? 2
= ?? ?
?? 1
+ ?? 2
?? 1
?? 2
= ?? ? ?
2 h ?? ( ?? 2
- ?? 2
)
= ?? ? ?? ( ?? 2
- ?? 2
) = 2 ????
 
 
Q7: The chord of contact of tangents from a point ?? to a circle passes through ?? . If ?? ?? and ?? ?? are 
the lengths of the tangents from ?? and ?? to the circle, then ???? is equal to 
(A) 
?? ?? + ?? ?? ?? 
(B) 
?? ?? - ?? ?? ?? 
(C) v ?? ?? ?? + ?? ?? ?? 
(D) v ?? ?? ?? - ?? ?? ?? 
Ans: (C) 
Let ?? ( ?? 1
, ?? 1
) and ?? ( ?? 2
, ?? 2
) be two points and ?? 2
+ ?? 2
= ?? 2
 be the given circle 
then the chord of contact of tangents drawn from ?? to the given circle is 
xx
1
+ yy
1
= a
2
 
It will pass through ?? ( ?? 2
, ?? 2
) , if ? ?? 2
?? 1
+ ?? 2
?? 1
= ?? 2
 
Now, ?? 1
= v ?? 1
2
+ ?? 1
2
- ?? 2
, ? ?? 2
= v ?? 2
2
+ ?? 2
2
- ?? 2
 
? ? ???? = v ( ?? 2
- ?? 1
)
2
+ ( ?? 2
- ?? 1
)
2
? ? ???? = v( ?? 2
2
+ ?? 2
2
) + ( ?? 1
2
+ ?? 1
2
) - 2 ( ?? 1
?? 2
+ ?? 1
?? 2
)
? ? ???? = v( ?? 2
2
+ ?? 2
2
) + ( ?? 1
2
+ ?? 1
2
) - 2 ?? 2
? [using (i)] 
? ? ???? = v( ?? 1
2
+ ?? 1
2
- ?? 2
) + ( ?? 2
2
+ ?? 2
2
- ?? 2
)
? ? ???? = v ?? 1
2
+ ?? 2
2
 
 
 
 
Page 5


JEE Solved Example on Straight Lines 
JEE Mains 
Q1: The opposite angular points of a square are ( ?? , ?? ) and ( ?? , - ?? ) . Then the co-ordinates of other 
two points are 
(A) D( 
?? ?? ,
?? ?? ) , ?? ( -
?? ?? ,
?? ?? ) 
(B) ?? (
?? ?? ,
?? ?? ) , ?? (
?? ?? ,
?? ?? ) 
(C) ?? (
?? ?? ,
?? ?? ) , ?? ( -
?? ?? ,
?? ?? ) 
(D) None of these 
Ans: (C) 
Obviously, slope of AC = 5 / 2. 
Let ?? be the slope of a line inclined at an angle of 45
°
 to ???? , then tan ? 45
°
= ±
?? -
5
2
1 + ?? ·
5
2
? ?? = -
7
3
·
3
7
. 
Thus, let the slope of ???? or ???? be 3/7and that of ???? or ???? be -
7
3
. Then equation of ???? is 3x -
7y + 19 = 0. 
Also the equation of ???? is 7x + 3y - 4 = 0. 
On solving these equations, we get, B ( -
1
2
,
5
2
). 
Now let the coordinates of the vertex ?? be ( h , ?? ) . Since the middle points of ???? and ???? are same, 
therefore 
1
2
( ?? -
1
2
) =
1
2
( 3 + 1 ) ? ?? =
9
2
,
1
2
( ?? +
5
2
) =
1
2
( 4 - 1 )
? ? ?? =
1
2
. Hence, ?? = (
9
2
,
1
2
) .
 
 
Q2: If the lines ?? = ?? ?? + ?? and ?? ?? = ?? + ?? are equally inclined to the line ?? = ???? + ?? , then ?? = 
(A) 
?? + ?? v ?? ?? 
(B) 
?? - ?? v ?? ?? 
(C) 
?? ± ?? v ?? ?? 
(D) 
?? ± ?? v ?? ?? 
Ans: (D) 
?? 1
= 3 , ?? 2
=
1
2
 and ?? 3
= ?? 
Let the angle between first and third line is ?? , and between second and third is ?? 2
, then 
tan ? ?? 1
=
3 - ?? 1 + 3 ?? and tan ? ?? 2
=
?? -
1
2
1 +
?? 2
 
But ?? 1
= ?? 2
? ? ?
3 - ?? 1 + 3 ?? =
?? -
1
2
1 +
?? 2
 
? ? 7 ?? 2
- 2 ?? - 7 = 0 ? ?? =
1 ± 5 v 2
7
 
 
Q3: Let ?? ( - ?? , ?? ) , ?? ( ?? , ?? ) and ?? ( ?? , ?? v ?? ) be three points. Then the equation of the bisector of the 
angle ???? ?? is 
(A) 
v ?? ?? ?? + ?? = ?? 
(B) ?? + v ?? ?? = ?? 
(C) v ?? ?? + ?? = ?? 
(D) ?? +
v ?? ?? ?? = ?? 
 
Ans: (C) 
Slope of QR =
3 v 3 - 0
3 - 0
= v 3 i.e., ?? = 60
°
 
Clearly, ? ?????? = 120
°
 
???? is the angle bisector of the angle, so line ???? makes 120
°
 with the positive direction of ?? -axis. 
Therefore, equation of the bisector of ? ?????? is ?? = tan ? 120
°
?? or ?? = v 3 ?? i.e., v 3 ?? + ?? = 0. 
 
Q4: If for a variable line 
?? ?? +
?? ?? = ?? , the condition 
?? ?? ?? +
?? ?? ?? =
?? ?? ?? ? ( ?? is a constant) is satisfied, then 
locus of foot of perpendicular drawn from origin to the line is 
(A) ?? ?? + ?? ?? = ?? ?? / ?? 
(B) ?? ?? + ?? ?? = ?? ?? ?? 
(C) ?? ?? + ?? ?? = ?? ?? 
(D) ?? ?? - ?? ?? = ?? ?? 
Ans: (C) 
Equation of perpendicular drawn from origin to the line 
?? ?? +
?? ?? = 1 is ?? - 0 =
?? ?? ( ?? - 0 ) 
[ ? m of given line =
- ?? ?? , ? m of perpendicular =
?? ?? ] 
? by - ax = 0 
?
?? ?? -
?? ?? = 0 
Now, the locus of foot of perpendicular is the intersection point of line 
?? ?? +
?? ?? = 1.  
and 
?? ?? -
?? ?? = 0. 
To find locus, squaring and adding (i) and (ii) 
(
?? ?? +
?? ?? )
2
+ (
?? ?? -
?? ?? )
2
= 1
? ?? 2
(
1
?? 2
+
1
?? 2
) + ?? 2
(
1
?? 2
+
1
?? 2
) = 1
? ?? 2
(
1
?? 2
) + ?? 2
(
1
?? 2
) = 1 , [ ?
1
?? 2
+
1
?? 2
=
1
?? 2
]
? ?? 2
+ ?? 2
= ?? 2
.
 
 
Q5: If the circle ?? ?? + ?? ?? - ?? ?? - ?? ?? + ?? = ?? does not touch or intersect the axes and the point 
( ?? , ?? ) lies inside the circle, then 
(A) ?? < ?? < ?? 
(B) ?? < ?? < ???? 
(C) ?? < ?? < ???? 
(D) none of these 
Ans: (C) 
The centre of the given circle is ( 2 , 3 ) and the radius = v 4 + 9 - ?? i.e. v 13 - k. 
Since the given circle does not touch or intersect the coordinate axes and the point 
( 2 , 2 ) lies inside the circle 
? ?? -cooridnate of centre > radius i.e. 2 > v 13 - k, 
?? -coordinate of centre > radius i.e. 3 > v 13 - k and 
4 + 4 - 8 - 12 + ?? < 0
? 4 > 13 - ?? , 9 > 13 - ?? and - 12 + ?? < 0
? ?? > 9 , ?? > 4 and ?? < 12 ? 9 < ?? < 12
 
 
Q6: If ?? ?? , ?? ?? be the inclination of tangents drawn from the point ?? to the circle ?? ?? + ?? ?? = ?? ?? with 
?? -axis, then the locus of ?? , it is given that ?? ???? ? ?? ?? + ?? ???? ? ?? ?? = ?? , is 
(A) ?? ( ?? ?? - ?? ?? ) = ?? ???? 
(B) ?? ( ?? ?? - ?? ?? ) = ?? ?? - ?? ?? 
(C) ?? ( ?? ?? - ?? ?? ) = ?? ???? 
(D) none of these 
Ans: (C) 
Any tangent is ?? = ???? ± ?? v 1 + ?? 2
 
If it passes through ?? ( h , ?? ) , then ( ?? - ?? h )
2
= ?? 2
( 1 + ?? 2
) or ?? 2
( h
2
- ?? 2
) - 2 ?? h ?? +
( ?? 2
- ?? 2
) = 0, where ?? = tan ? ?? 
c ot ? ?? 1
+ c ot ? ?? 2
= ?? ?
1
?? 1
+
1
?? 2
= ?? ?
?? 1
+ ?? 2
?? 1
?? 2
= ?? ? ?
2 h ?? ( ?? 2
- ?? 2
)
= ?? ? ?? ( ?? 2
- ?? 2
) = 2 ????
 
 
Q7: The chord of contact of tangents from a point ?? to a circle passes through ?? . If ?? ?? and ?? ?? are 
the lengths of the tangents from ?? and ?? to the circle, then ???? is equal to 
(A) 
?? ?? + ?? ?? ?? 
(B) 
?? ?? - ?? ?? ?? 
(C) v ?? ?? ?? + ?? ?? ?? 
(D) v ?? ?? ?? - ?? ?? ?? 
Ans: (C) 
Let ?? ( ?? 1
, ?? 1
) and ?? ( ?? 2
, ?? 2
) be two points and ?? 2
+ ?? 2
= ?? 2
 be the given circle 
then the chord of contact of tangents drawn from ?? to the given circle is 
xx
1
+ yy
1
= a
2
 
It will pass through ?? ( ?? 2
, ?? 2
) , if ? ?? 2
?? 1
+ ?? 2
?? 1
= ?? 2
 
Now, ?? 1
= v ?? 1
2
+ ?? 1
2
- ?? 2
, ? ?? 2
= v ?? 2
2
+ ?? 2
2
- ?? 2
 
? ? ???? = v ( ?? 2
- ?? 1
)
2
+ ( ?? 2
- ?? 1
)
2
? ? ???? = v( ?? 2
2
+ ?? 2
2
) + ( ?? 1
2
+ ?? 1
2
) - 2 ( ?? 1
?? 2
+ ?? 1
?? 2
)
? ? ???? = v( ?? 2
2
+ ?? 2
2
) + ( ?? 1
2
+ ?? 1
2
) - 2 ?? 2
? [using (i)] 
? ? ???? = v( ?? 1
2
+ ?? 1
2
- ?? 2
) + ( ?? 2
2
+ ?? 2
2
- ?? 2
)
? ? ???? = v ?? 1
2
+ ?? 2
2
 
 
 
 
Q8: The circles ?? ?? + ?? ?? + ?? ?? ?? ?? - ?? ?? = ?? and ?? ?? + ?? ?? + ?? ?? ?? ?? - ?? ?? = ?? cut each other 
orthogonally. If ?? ?? , ?? ?? are perpendicular from ( ?? , ?? ) and ( ?? , - ?? ) on a common tangent of these 
circle, then ?? ?? ?? ?? is equal to 
(A) 
?? ?? ?? 
(B) ?? ?? 
(C) ?? ?? ?? 
(D) ?? ?? + ?? 
Ans: (B) 
Given ?? 1
?? 2
+ a
2
= 0 
If I + my = 1 is common tangent of these circle, then 
- | ?? 1
- 1
v 1
1
+ ?? 2
= ± v ?? 1
2
+ ?? 2
= ( ?? ?? 1
+ 1 )
2
= ( 1
2
+ ?? 2
) ( ?? 1
2
+ ?? 2
)
? ? ?? 2
?? 1
2
- 2 ?? ?? 1
+ ?? 2
( 1
2
+ ?? 2
) - 1 = 0
 
Similarly, ?? 2
?? 2
2
- 21 ?? 2
+ ?? 2
( 1
2
+ ?? 2
) - 1 = 0 
So that g
1
, g
2
 are the roots of the equation 
?? 2
?? 2
- 2 ???? + ?? 2
( ?? 2
+ ?? 2
) - 1 = 0
? ? ?? 1
?? 2
=
?? 2
( ?? 2
+ ?? 2
) - 1
?? 2
= - ?? 2
? ? ?? 2
( ?? 2
+ ?? 2
) = 1 - ?? 2
?? 2
? …
 
Now, ?? 1
?? 2
=
| ???? - 1 |
v 1
2
+ ?? 2
·
| - ???? - 1 |
v ?? 2
+ ?? 2
=
| 1 - ?? 2
?? 2
|
1
2
+ ?? 2
= ?? 2
[ from (ii)] 
 
Q9: The equation of the line touching both the parabolas ?? ?? = ?? ?? and ?? ?? = - ???? ?? is 
(A) ?? ?? + ?? - ?? = ?? 
(B) ?? + ?? ?? + ?? = ?? 
(C) ?? - ?? ?? + ?? = ?? 
(D) ?? - ?? ?? - ?? = ?? 
Ans: (C) 
Any tangent to ?? 2
= 4 ?? is ?? = ???? +
1
?? 
Solving with ?? 2
= - 32 ?? 
?? 2
= - 32 ( ???? +
1
?? ) ? ?? 2
+ 32 ???? +
32
?? = 0 
But the line is tangent to 2 nd parabola. 
Discriminant = 0 
? ( 32 )
2
?? 2
= 4 ·
32
?? ? ? ? ?? 3
=
4 . 32
( 32 )
2
=
1
8
? ? ?? =
1
2
 
Read More
172 videos|472 docs|154 tests

Up next

FAQs on Solved Example: Straight Lines - Mathematics (Maths) for JEE Main & Advanced

1. How to find the equation of a straight line passing through two given points?
2. What is the condition for two lines to be parallel?
Ans. Two lines are parallel if they have the same slope but different y-intercepts. This means that the slopes of the two lines are equal, but the y-intercepts are not equal.
3. How to determine if two lines are perpendicular to each other?
Ans. Two lines are perpendicular if the product of their slopes is -1. In other words, if the slopes of the two lines are negative reciprocals of each other, then they are perpendicular.
4. How to find the distance between a point and a line?
Ans. To find the distance between a point (x1, y1) and a line Ax + By + C = 0, use the formula |Ax1 + By1 + C| / √(A^2 + B^2).
5. What is the significance of the slope of a straight line?
Ans. The slope of a straight line represents the rate at which the line is rising or falling. It also indicates the direction of the line - a positive slope means the line is increasing, while a negative slope means the line is decreasing.
172 videos|472 docs|154 tests
Download as PDF

Up next

Explore Courses for JEE exam
Related Searches

study material

,

Exam

,

practice quizzes

,

past year papers

,

video lectures

,

MCQs

,

Objective type Questions

,

Important questions

,

Previous Year Questions with Solutions

,

ppt

,

Viva Questions

,

Summary

,

Solved Example: Straight Lines | Mathematics (Maths) for JEE Main & Advanced

,

Solved Example: Straight Lines | Mathematics (Maths) for JEE Main & Advanced

,

pdf

,

Solved Example: Straight Lines | Mathematics (Maths) for JEE Main & Advanced

,

Free

,

mock tests for examination

,

Semester Notes

,

shortcuts and tricks

,

Sample Paper

,

Extra Questions

;