UPSC Exam  >  UPSC Notes  >  Science & Technology for UPSC CSE  >  NCERT Textbook: Semiconductor Electronics

NCERT Textbook: Semiconductor Electronics | Science & Technology for UPSC CSE PDF Download

Download, print and study this document offline
114 videos|433 docs|209 tests

FAQs on NCERT Textbook: Semiconductor Electronics - Science & Technology for UPSC CSE

1. What are semiconductors and how do they work?
Ans. Semiconductors are materials that have electrical conductivity between that of conductors and insulators. They are typically made of elements such as silicon or germanium. Semiconductors work by controlling the flow of electric current through their structure. They contain impurities or dopants that introduce extra electrons (n-type) or holes (p-type) into the material, creating a conductive path. By manipulating the concentration of these impurities, the conductivity of the semiconductor can be controlled.
2. What are the applications of semiconductor electronics?
Ans. Semiconductor electronics find applications in various fields. Some common applications include: - Transistors: These are the building blocks of modern electronic devices, such as computers and smartphones. They amplify and switch electronic signals. - Diodes: Diodes allow current to flow in one direction and are used in rectifiers, voltage regulators, and various electronic circuits. - Integrated Circuits (ICs): These miniaturized circuits consist of thousands or millions of transistors and other electronic components. They are used in microprocessors, memory chips, and other digital circuits. - Light Emitting Diodes (LEDs): LEDs are used as indicators, displays, and in lighting applications due to their energy efficiency and long lifespan. - Solar Cells: Semiconductor-based solar cells convert sunlight into electrical energy and are used in solar panels.
3. What is the difference between intrinsic and extrinsic semiconductors?
Ans. Intrinsic semiconductors are pure semiconducting materials, such as silicon or germanium, with no intentional impurities. They have a balanced number of free electrons and holes at room temperature. Extrinsic semiconductors, on the other hand, are doped with impurities to modify their electrical properties. They can be of two types: - n-type semiconductor: Doped with impurities that introduce extra electrons, creating an excess of negative charge carriers. - p-type semiconductor: Doped with impurities that introduce extra holes, creating an excess of positive charge carriers. The doping process allows the conductivity of the semiconductor to be controlled and tailored for specific applications.
4. What is the working principle of a transistor?
Ans. A transistor is a three-layer semiconductor device with two pn-junctions. It operates based on the principle of amplification and switching of electrical signals. The three layers are called the emitter, base, and collector. In an npn transistor, for example, the base region is very thin compared to the other two layers. When a small current flows from the base-emitter junction, it controls a larger current flowing from the collector-emitter junction. This current amplification is achieved by the control of majority charge carriers (electrons in the case of npn transistor) through the base region. Transistors can be used as amplifiers to increase the strength of weak signals or as switches to control the flow of current in electronic circuits.
5. How are semiconductors used in solar cells?
Ans. Solar cells, also known as photovoltaic cells, are devices that convert sunlight into electrical energy. They are made using semiconductor materials, typically silicon. The process involves creating a pn-junction within the semiconductor material. When sunlight (photons) strikes the solar cell, it generates electron-hole pairs within the semiconductor. The pn-junction separates the electrons and holes, creating a voltage difference. This voltage difference can be used to generate an electric current. The efficiency of solar cells depends on the ability of the semiconductor material to absorb sunlight and convert it into electrical energy. Different types of semiconductors, such as monocrystalline silicon, polycrystalline silicon, and thin-film materials, are used in solar cells to optimize their performance and cost-effectiveness.
Related Searches

Extra Questions

,

Sample Paper

,

Semester Notes

,

shortcuts and tricks

,

mock tests for examination

,

pdf

,

NCERT Textbook: Semiconductor Electronics | Science & Technology for UPSC CSE

,

Important questions

,

ppt

,

Free

,

past year papers

,

Exam

,

study material

,

MCQs

,

Previous Year Questions with Solutions

,

video lectures

,

Summary

,

NCERT Textbook: Semiconductor Electronics | Science & Technology for UPSC CSE

,

practice quizzes

,

NCERT Textbook: Semiconductor Electronics | Science & Technology for UPSC CSE

,

Viva Questions

,

Objective type Questions

;