In a certain system of units 1 unit of time is 5 seconds, one unit of ...
We know that unit of power is J/s. now, Joule= kg m^2 s^-2. therefore, P = (kg m^2 s^-2)/s = kg m^2 s^-3
so in this system, 1 unit of power= {20 kg * 1 m * 1m * (5 * 5 * 5)^-3 s}.... i.e, by solving this we get, 1 unit of power = 0.16 Watt.
I hope u will understand
In a certain system of units 1 unit of time is 5 seconds, one unit of ...
Introduction:
In this system of units, the units of time, mass, and length are defined as 5 seconds, 20 kg, and 1 meter respectively. We need to determine what one unit of power corresponds to in this system of units.
Formula:
The formula for power is given as P = W/t, where P is power, W is the work done, and t is time.
Calculation:
To calculate the unit of power in this system, we need to use the given units of time, mass, and length to derive the unit of work.
We know that work is given by the formula W = F x d, where F is force and d is distance. In this system of units, the unit of force is not given, but we can use the unit of mass and length to derive it.
We know that force is given by the formula F = ma, where m is mass and a is acceleration. In this system of units, the unit of mass is 20 kg and the unit of length is 1 m. Therefore, the unit of acceleration can be derived as follows:
a = F/m = (ma)/m = 1 unit of force / 20 kg = 0.05 units of force/kg.
Now, we can use this unit of force to derive the unit of work. We know that work is given by the formula W = F x d. In this system of units, the unit of length is 1 m. Therefore, the unit of work can be derived as follows:
W = F x d = (0.05 units of force/kg) x 1 m = 0.05 units of work.
Finally, we can use the unit of work to derive the unit of power. We know that power is given by the formula P = W/t. In this system of units, the unit of time is 5 seconds. Therefore, the unit of power can be derived as follows:
P = W/t = (0.05 units of work) / 5 seconds = 0.01 units of power per second.
Conclusion:
In this system of units, one unit of power corresponds to 0.01 units of power per second. This can be derived using the given units of time, mass, and length to derive the unit of work, and then using the unit of work to derive the unit of power.