Question Description
Crystal field theory views the bonding in complexes as arising from electrostatic interaction and considers the effect of the ligand charges on the energies of the metal ion d-orbitals.In this theory, a ligand lone pair is modelled as a point negative charge that repels electrons in the d-orbitals of the central metal ion. The theory concentrated on the resulting splitting of the d-orbitals in two groups with different energies and used that splitting to rationalize and correlate the optical spectra, thermodynamic stability, and magnetic properties of complexes. This energy splitting between the two sets of dorbitals is called the crystal field splitting D.In general, the crystal field splitting energy D corresponds to wavelength of light in visible region of the spectrum, and colours of the complexes can therefore be attributed to electronic transition between the lower-and higher energy sets of d-orbitals.In general, the colour that the we see is complementry to the colour absorbed.Different metal ion have different values of D, which explains why their complexes with the same ligand have different colour.Similarly, the crystal field splitting also depends on the nature of ligands and as the ligand for the same metal varies from H2O to NH3 to ethylenediamine, D for complexes increases. Accordingly, the electronic transition shifts to higher energy (shorter wavelength) as the ligand varies from H2O to NH3 to en, thus accounting for the variation in colour.Crystal field theory accounts for the magnetic properties of complexes in terms of the relative values of and the spin pairing energy P. Small values favour high spin complexes, and large Dvalues favour low spin complexes.Which of the following statements is incorrect?a)The Ni2+ (aq) cation is coloured because Ni2+ ion can absorb light, which promotes electrons from the filled d-orbitals to the higher energy half filled d-orbitals.b)The Zn2+ (aq) cation is coloured because the d-orbitals are completely filled and no electrons can be promoted, so no light is absorbed.c)A complex which has just one absorption band at 455 nm, must be red coloured.d)noneCorrect answer is option 'C'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared
according to
the JEE exam syllabus. Information about Crystal field theory views the bonding in complexes as arising from electrostatic interaction and considers the effect of the ligand charges on the energies of the metal ion d-orbitals.In this theory, a ligand lone pair is modelled as a point negative charge that repels electrons in the d-orbitals of the central metal ion. The theory concentrated on the resulting splitting of the d-orbitals in two groups with different energies and used that splitting to rationalize and correlate the optical spectra, thermodynamic stability, and magnetic properties of complexes. This energy splitting between the two sets of dorbitals is called the crystal field splitting D.In general, the crystal field splitting energy D corresponds to wavelength of light in visible region of the spectrum, and colours of the complexes can therefore be attributed to electronic transition between the lower-and higher energy sets of d-orbitals.In general, the colour that the we see is complementry to the colour absorbed.Different metal ion have different values of D, which explains why their complexes with the same ligand have different colour.Similarly, the crystal field splitting also depends on the nature of ligands and as the ligand for the same metal varies from H2O to NH3 to ethylenediamine, D for complexes increases. Accordingly, the electronic transition shifts to higher energy (shorter wavelength) as the ligand varies from H2O to NH3 to en, thus accounting for the variation in colour.Crystal field theory accounts for the magnetic properties of complexes in terms of the relative values of and the spin pairing energy P. Small values favour high spin complexes, and large Dvalues favour low spin complexes.Which of the following statements is incorrect?a)The Ni2+ (aq) cation is coloured because Ni2+ ion can absorb light, which promotes electrons from the filled d-orbitals to the higher energy half filled d-orbitals.b)The Zn2+ (aq) cation is coloured because the d-orbitals are completely filled and no electrons can be promoted, so no light is absorbed.c)A complex which has just one absorption band at 455 nm, must be red coloured.d)noneCorrect answer is option 'C'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for Crystal field theory views the bonding in complexes as arising from electrostatic interaction and considers the effect of the ligand charges on the energies of the metal ion d-orbitals.In this theory, a ligand lone pair is modelled as a point negative charge that repels electrons in the d-orbitals of the central metal ion. The theory concentrated on the resulting splitting of the d-orbitals in two groups with different energies and used that splitting to rationalize and correlate the optical spectra, thermodynamic stability, and magnetic properties of complexes. This energy splitting between the two sets of dorbitals is called the crystal field splitting D.In general, the crystal field splitting energy D corresponds to wavelength of light in visible region of the spectrum, and colours of the complexes can therefore be attributed to electronic transition between the lower-and higher energy sets of d-orbitals.In general, the colour that the we see is complementry to the colour absorbed.Different metal ion have different values of D, which explains why their complexes with the same ligand have different colour.Similarly, the crystal field splitting also depends on the nature of ligands and as the ligand for the same metal varies from H2O to NH3 to ethylenediamine, D for complexes increases. Accordingly, the electronic transition shifts to higher energy (shorter wavelength) as the ligand varies from H2O to NH3 to en, thus accounting for the variation in colour.Crystal field theory accounts for the magnetic properties of complexes in terms of the relative values of and the spin pairing energy P. Small values favour high spin complexes, and large Dvalues favour low spin complexes.Which of the following statements is incorrect?a)The Ni2+ (aq) cation is coloured because Ni2+ ion can absorb light, which promotes electrons from the filled d-orbitals to the higher energy half filled d-orbitals.b)The Zn2+ (aq) cation is coloured because the d-orbitals are completely filled and no electrons can be promoted, so no light is absorbed.c)A complex which has just one absorption band at 455 nm, must be red coloured.d)noneCorrect answer is option 'C'. Can you explain this answer?.
Solutions for Crystal field theory views the bonding in complexes as arising from electrostatic interaction and considers the effect of the ligand charges on the energies of the metal ion d-orbitals.In this theory, a ligand lone pair is modelled as a point negative charge that repels electrons in the d-orbitals of the central metal ion. The theory concentrated on the resulting splitting of the d-orbitals in two groups with different energies and used that splitting to rationalize and correlate the optical spectra, thermodynamic stability, and magnetic properties of complexes. This energy splitting between the two sets of dorbitals is called the crystal field splitting D.In general, the crystal field splitting energy D corresponds to wavelength of light in visible region of the spectrum, and colours of the complexes can therefore be attributed to electronic transition between the lower-and higher energy sets of d-orbitals.In general, the colour that the we see is complementry to the colour absorbed.Different metal ion have different values of D, which explains why their complexes with the same ligand have different colour.Similarly, the crystal field splitting also depends on the nature of ligands and as the ligand for the same metal varies from H2O to NH3 to ethylenediamine, D for complexes increases. Accordingly, the electronic transition shifts to higher energy (shorter wavelength) as the ligand varies from H2O to NH3 to en, thus accounting for the variation in colour.Crystal field theory accounts for the magnetic properties of complexes in terms of the relative values of and the spin pairing energy P. Small values favour high spin complexes, and large Dvalues favour low spin complexes.Which of the following statements is incorrect?a)The Ni2+ (aq) cation is coloured because Ni2+ ion can absorb light, which promotes electrons from the filled d-orbitals to the higher energy half filled d-orbitals.b)The Zn2+ (aq) cation is coloured because the d-orbitals are completely filled and no electrons can be promoted, so no light is absorbed.c)A complex which has just one absorption band at 455 nm, must be red coloured.d)noneCorrect answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE.
Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of Crystal field theory views the bonding in complexes as arising from electrostatic interaction and considers the effect of the ligand charges on the energies of the metal ion d-orbitals.In this theory, a ligand lone pair is modelled as a point negative charge that repels electrons in the d-orbitals of the central metal ion. The theory concentrated on the resulting splitting of the d-orbitals in two groups with different energies and used that splitting to rationalize and correlate the optical spectra, thermodynamic stability, and magnetic properties of complexes. This energy splitting between the two sets of dorbitals is called the crystal field splitting D.In general, the crystal field splitting energy D corresponds to wavelength of light in visible region of the spectrum, and colours of the complexes can therefore be attributed to electronic transition between the lower-and higher energy sets of d-orbitals.In general, the colour that the we see is complementry to the colour absorbed.Different metal ion have different values of D, which explains why their complexes with the same ligand have different colour.Similarly, the crystal field splitting also depends on the nature of ligands and as the ligand for the same metal varies from H2O to NH3 to ethylenediamine, D for complexes increases. Accordingly, the electronic transition shifts to higher energy (shorter wavelength) as the ligand varies from H2O to NH3 to en, thus accounting for the variation in colour.Crystal field theory accounts for the magnetic properties of complexes in terms of the relative values of and the spin pairing energy P. Small values favour high spin complexes, and large Dvalues favour low spin complexes.Which of the following statements is incorrect?a)The Ni2+ (aq) cation is coloured because Ni2+ ion can absorb light, which promotes electrons from the filled d-orbitals to the higher energy half filled d-orbitals.b)The Zn2+ (aq) cation is coloured because the d-orbitals are completely filled and no electrons can be promoted, so no light is absorbed.c)A complex which has just one absorption band at 455 nm, must be red coloured.d)noneCorrect answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
Crystal field theory views the bonding in complexes as arising from electrostatic interaction and considers the effect of the ligand charges on the energies of the metal ion d-orbitals.In this theory, a ligand lone pair is modelled as a point negative charge that repels electrons in the d-orbitals of the central metal ion. The theory concentrated on the resulting splitting of the d-orbitals in two groups with different energies and used that splitting to rationalize and correlate the optical spectra, thermodynamic stability, and magnetic properties of complexes. This energy splitting between the two sets of dorbitals is called the crystal field splitting D.In general, the crystal field splitting energy D corresponds to wavelength of light in visible region of the spectrum, and colours of the complexes can therefore be attributed to electronic transition between the lower-and higher energy sets of d-orbitals.In general, the colour that the we see is complementry to the colour absorbed.Different metal ion have different values of D, which explains why their complexes with the same ligand have different colour.Similarly, the crystal field splitting also depends on the nature of ligands and as the ligand for the same metal varies from H2O to NH3 to ethylenediamine, D for complexes increases. Accordingly, the electronic transition shifts to higher energy (shorter wavelength) as the ligand varies from H2O to NH3 to en, thus accounting for the variation in colour.Crystal field theory accounts for the magnetic properties of complexes in terms of the relative values of and the spin pairing energy P. Small values favour high spin complexes, and large Dvalues favour low spin complexes.Which of the following statements is incorrect?a)The Ni2+ (aq) cation is coloured because Ni2+ ion can absorb light, which promotes electrons from the filled d-orbitals to the higher energy half filled d-orbitals.b)The Zn2+ (aq) cation is coloured because the d-orbitals are completely filled and no electrons can be promoted, so no light is absorbed.c)A complex which has just one absorption band at 455 nm, must be red coloured.d)noneCorrect answer is option 'C'. Can you explain this answer?, a detailed solution for Crystal field theory views the bonding in complexes as arising from electrostatic interaction and considers the effect of the ligand charges on the energies of the metal ion d-orbitals.In this theory, a ligand lone pair is modelled as a point negative charge that repels electrons in the d-orbitals of the central metal ion. The theory concentrated on the resulting splitting of the d-orbitals in two groups with different energies and used that splitting to rationalize and correlate the optical spectra, thermodynamic stability, and magnetic properties of complexes. This energy splitting between the two sets of dorbitals is called the crystal field splitting D.In general, the crystal field splitting energy D corresponds to wavelength of light in visible region of the spectrum, and colours of the complexes can therefore be attributed to electronic transition between the lower-and higher energy sets of d-orbitals.In general, the colour that the we see is complementry to the colour absorbed.Different metal ion have different values of D, which explains why their complexes with the same ligand have different colour.Similarly, the crystal field splitting also depends on the nature of ligands and as the ligand for the same metal varies from H2O to NH3 to ethylenediamine, D for complexes increases. Accordingly, the electronic transition shifts to higher energy (shorter wavelength) as the ligand varies from H2O to NH3 to en, thus accounting for the variation in colour.Crystal field theory accounts for the magnetic properties of complexes in terms of the relative values of and the spin pairing energy P. Small values favour high spin complexes, and large Dvalues favour low spin complexes.Which of the following statements is incorrect?a)The Ni2+ (aq) cation is coloured because Ni2+ ion can absorb light, which promotes electrons from the filled d-orbitals to the higher energy half filled d-orbitals.b)The Zn2+ (aq) cation is coloured because the d-orbitals are completely filled and no electrons can be promoted, so no light is absorbed.c)A complex which has just one absorption band at 455 nm, must be red coloured.d)noneCorrect answer is option 'C'. Can you explain this answer? has been provided alongside types of Crystal field theory views the bonding in complexes as arising from electrostatic interaction and considers the effect of the ligand charges on the energies of the metal ion d-orbitals.In this theory, a ligand lone pair is modelled as a point negative charge that repels electrons in the d-orbitals of the central metal ion. The theory concentrated on the resulting splitting of the d-orbitals in two groups with different energies and used that splitting to rationalize and correlate the optical spectra, thermodynamic stability, and magnetic properties of complexes. This energy splitting between the two sets of dorbitals is called the crystal field splitting D.In general, the crystal field splitting energy D corresponds to wavelength of light in visible region of the spectrum, and colours of the complexes can therefore be attributed to electronic transition between the lower-and higher energy sets of d-orbitals.In general, the colour that the we see is complementry to the colour absorbed.Different metal ion have different values of D, which explains why their complexes with the same ligand have different colour.Similarly, the crystal field splitting also depends on the nature of ligands and as the ligand for the same metal varies from H2O to NH3 to ethylenediamine, D for complexes increases. Accordingly, the electronic transition shifts to higher energy (shorter wavelength) as the ligand varies from H2O to NH3 to en, thus accounting for the variation in colour.Crystal field theory accounts for the magnetic properties of complexes in terms of the relative values of and the spin pairing energy P. Small values favour high spin complexes, and large Dvalues favour low spin complexes.Which of the following statements is incorrect?a)The Ni2+ (aq) cation is coloured because Ni2+ ion can absorb light, which promotes electrons from the filled d-orbitals to the higher energy half filled d-orbitals.b)The Zn2+ (aq) cation is coloured because the d-orbitals are completely filled and no electrons can be promoted, so no light is absorbed.c)A complex which has just one absorption band at 455 nm, must be red coloured.d)noneCorrect answer is option 'C'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice Crystal field theory views the bonding in complexes as arising from electrostatic interaction and considers the effect of the ligand charges on the energies of the metal ion d-orbitals.In this theory, a ligand lone pair is modelled as a point negative charge that repels electrons in the d-orbitals of the central metal ion. The theory concentrated on the resulting splitting of the d-orbitals in two groups with different energies and used that splitting to rationalize and correlate the optical spectra, thermodynamic stability, and magnetic properties of complexes. This energy splitting between the two sets of dorbitals is called the crystal field splitting D.In general, the crystal field splitting energy D corresponds to wavelength of light in visible region of the spectrum, and colours of the complexes can therefore be attributed to electronic transition between the lower-and higher energy sets of d-orbitals.In general, the colour that the we see is complementry to the colour absorbed.Different metal ion have different values of D, which explains why their complexes with the same ligand have different colour.Similarly, the crystal field splitting also depends on the nature of ligands and as the ligand for the same metal varies from H2O to NH3 to ethylenediamine, D for complexes increases. Accordingly, the electronic transition shifts to higher energy (shorter wavelength) as the ligand varies from H2O to NH3 to en, thus accounting for the variation in colour.Crystal field theory accounts for the magnetic properties of complexes in terms of the relative values of and the spin pairing energy P. Small values favour high spin complexes, and large Dvalues favour low spin complexes.Which of the following statements is incorrect?a)The Ni2+ (aq) cation is coloured because Ni2+ ion can absorb light, which promotes electrons from the filled d-orbitals to the higher energy half filled d-orbitals.b)The Zn2+ (aq) cation is coloured because the d-orbitals are completely filled and no electrons can be promoted, so no light is absorbed.c)A complex which has just one absorption band at 455 nm, must be red coloured.d)noneCorrect answer is option 'C'. Can you explain this answer? tests, examples and also practice JEE tests.