Square root of 1 cos theta divided by 1 - cos theta square root of...
Explanation of the given expression:
The given expression is:
√(1 - cosθ) / (1 - cosθ) √(1 - cosθ) / cosθ
To simplify this expression, we can break it down into its individual components and then evaluate each part separately.
1. Simplifying the numerator:
The numerator of the expression is √(1 - cosθ). We can simplify this by rationalizing the denominator.
√(1 - cosθ) * √(1 + cosθ) / √(1 + cosθ)
Using the property of square roots, we can multiply the numerator and denominator by the conjugate of the denominator to eliminate the square root.
(√(1 - cosθ) * √(1 + cosθ)) / (√(1 + cosθ) * √(1 + cosθ))
Simplifying further:
√((1 - cosθ)(1 + cosθ)) / (1 + cosθ)
Using the property (a - b)(a + b) = a^2 - b^2, we can simplify the numerator:
√(1 - cos^2θ) / (1 + cosθ)
2. Simplifying the denominator:
The denominator of the expression is (1 - cosθ) √(1 - cosθ) / cosθ. We can simplify this using the distributive property.
(1 - cosθ) * √(1 - cosθ) / cosθ
Expanding the numerator:
√(1 - cosθ - cos^2θ) / cosθ
Using the property of square roots, we can simplify the numerator:
√((1 - cosθ)(1 + cosθ)) / cosθ
Again, using the property (a - b)(a + b) = a^2 - b^2, we can simplify the numerator:
√(1 - cos^2θ) / cosθ
3. Combining the simplified numerator and denominator:
Now that we have simplified the numerator and denominator separately, we can combine them:
(√(1 - cos^2θ) / (1 + cosθ)) / (√(1 - cos^2θ) / cosθ)
To divide fractions, we can multiply by the reciprocal of the second fraction:
(√(1 - cos^2θ) / (1 + cosθ)) * (cosθ / √(1 - cos^2θ))
Simplifying further:
cosθ / (1 + cosθ)
Final Answer:
The simplified expression of the given expression is cosθ / (1 + cosθ).