If sin inverse x plus cos inverse x is p then the value of 2tanp/3divi...
Explanation:
We are given that:
sin inverse x + cos inverse x = p
To solve the given expression, we need to use the following trigonometric identities:
- sin (a + b) = sin a cos b + cos a sin b
- cos (a + b) = cos a cos b – sin a sin b
- tan (a + b) = (tan a + tan b) / (1 – tan a tan b)
- sin^2 a + cos^2 a = 1
Solution:
Let us begin by using the first two identities to find sin p and cos p:
sin p = sin (sin inverse x + cos inverse x)
= sin inverse x cos cos inverse x + cos inverse x sin sin inverse x
= x sqrt(1 – x^2) + sqrt(1 – x^2) x
= sqrt(1 – x^2) (x + 1)
cos p = cos (sin inverse x + cos inverse x)
= cos inverse x cos sin inverse x – sin inverse x sin cos inverse x
= sqrt(1 – x^2) sqrt(1 – x^2) – x x
= 1 – 2x^2
Now, we can use these values to find tan p:
tan p = sin p / cos p
= (x + 1) / (1 – 2x^2)
Next, we can use the third identity to find 2tanp/3:
2tanp/3 = 2tan (p/3 + p/3)
= 2(tan p/3 + tan p/3 / (1 – tan^2 p/3)
= 2[(tan p/3 + tan p/3) / (1 – tan^2 p/3)]
= 2[2tan p/3 / (1 – tan^2 p/3)]
= 4tan p/3 / (1 – tan^2 p/3)
Finally, we can substitute the value of tan p to get:
2tanp/3 / (1 – tan^2 p/3) = 4[(x + 1) / (1 – 2x^2)] / [1 – (x + 1)^2 / (1 – 2x^2)]
= 4(x + 1) / (1 – 3x^2)
Hence, the value of 2tanp/3 / (1 – tan^2 p/3) is 4(x + 1) / (1 – 3x^2).