Gravity well :
A gravity well or gravitational well is a conceptual model of the gravitational field surrounding a body in space – the more massive the body, the deeper and more extensive the gravity well associated with it. The Sun is very massive, relative to other bodies in the Solar System, so the corresponding gravity well that surrounds it appears "deep" and far-reaching. The gravity wells of asteroids and small moons, conversely, are often depicted as very shallow. Anything at the center of mass of a planet or moon is considered to be at the bottom of that celestial body's gravity well, and so escaping the effects of gravity from such a planet or moon (to enter outer space) is sometimes called "climbing out of the gravity well". The deeper a gravity well is, the more energy any space-bound "climber" must use to escape it.
In astrophysics, a gravity well is specifically the gravitational potential field around a massive body. Other types of potential wells include electrical and magnetic potential wells. Physical models of gravity wells are sometimes used to illustrate orbital mechanics. Gravity wells are frequently confused with embedding diagrams used in general relativity theory, but the two concepts are distinctly separate and not directly related.
Artesian well :
Artesian well, well from which water flows under natural pressure without pumping. It is dug or drilled wherever a gently dipping, permeable rock layer (such as sandstone) receives water along its outcrop at a level higher than the level of the surface of the ground at the well site. At the outcrop the water moves down into the aquifer (water-bearing layer) but is prevented from leaving it, by impermeable rock layers (such as shale) above and below it. Pressure from the water’s weight (hydrostatic pressure) forces water to the surface of a well drilled down into the aquifer; the pressure for the steady upflow is maintained by the continuing penetration of water into the aquifer at the intake area.
In places where the overlying impermeable rocks are broken by joints or faults, water may escape through them to rise to the surface as artesian springs. In some areas, artesian wells and springs are a major source of water, especially in arid plains adjacent to mountain ranges that receive precipitation. The rapid development of new wells through over-drilling, however, has tended to reduce head pressures in many artesian systems. As a result, most artesian wells are now outfitted with pumps.