Photoelectric work function of a metal is 1eV.Light of wavelength &lam...
Understanding the Photoelectric Effect
The photoelectric effect occurs when light shines on a metal surface, causing the emission of electrons. The energy of the incoming photons must exceed the work function of the metal for electrons to be emitted.
Given Data
- Work function (φ) = 1 eV
- Wavelength (λ) = 3000 Å = 3000 x 10^(-10) m = 3 x 10^(-7) m
Calculating Photon Energy
The energy of a photon can be calculated using the formula:
\[ E = \frac{hc}{\lambda} \]
where:
- \( h \) (Planck’s constant) = \( 6.626 \times 10^{-34} \, \text{Js} \)
- \( c \) (speed of light) = \( 3 \times 10^{8} \, \text{m/s} \)
Substituting the values:
\[ E = \frac{(6.626 \times 10^{-34} \, \text{Js})(3 \times 10^{8} \, \text{m/s})}{3 \times 10^{-7} \, \text{m}} \]
Calculating \( E \):
\[ E = \frac{(6.626 \times 3) \times 10^{-26}}{3} = 6.626 \times 10^{-19} \, \text{J} \]
Convert \( E \) into eV:
\[ E \approx \frac{6.626 \times 10^{-19} \, \text{J}}{1.6 \times 10^{-19} \, \text{J/eV}} \approx 4.14 \, \text{eV} \]
Finding Kinetic Energy of Electrons
Using the photoelectric equation:
\[ K.E. = E - φ \]
\[ K.E. = 4.14 \, \text{eV} - 1 \, \text{eV} = 3.14 \, \text{eV} \]
Converting \( K.E. \) to Joules:
\[ K.E. = 3.14 \times 1.6 \times 10^{-19} \, \text{J} \approx 5.024 \times 10^{-19} \, \text{J} \]
Calculating Velocity of Electrons
Using the kinetic energy formula:
\[ K.E. = \frac{1}{2} mv^2 \]
Assuming the mass of an electron, \( m = 9.11 \times 10^{-31} \, \text{kg} \):
\[ 5.024 \times 10^{-19} = \frac{1}{2} (9.11 \times 10^{-31}) v^2 \]
Solving for \( v \):
\[ v^2 = \frac{2 \times 5.024 \times 10^{-19}}{9.11 \times 10^{-31}} \approx 1.104 \times 10^{12} \]
\[ v \approx 10^6 \, \text{m/s} \]
Thus, the