Prove that tan20.tan80= root3 tan50?
**Proof:**
Let's begin by using the trigonometric identity:
tan(A + B) = (tan A + tan B) / (1 - tan A tan B)
**Step 1: Simplifying tan(20 + 80):**
Using the identity above, we can simplify tan(20 + 80) as follows:
tan(20 + 80) = (tan 20 + tan 80) / (1 - tan 20 tan 80)
**Step 2: Simplifying tan(20 - 10):**
Now, let's consider another trigonometric identity:
tan(A - B) = (tan A - tan B) / (1 + tan A tan B)
We can rewrite tan(20 + 80) as tan(20 - 10) using this identity:
tan(20 + 80) = tan(20 - 10) = (tan 20 - tan 10) / (1 + tan 20 tan 10)
**Step 3: Simplifying tan(20 - 10):**
Next, we can express tan(20 - 10) as follows:
tan(20 - 10) = tan(30)
Since tan(30) = 1/√3, we can substitute this value into our equation:
(tan 20 - tan 10) / (1 + tan 20 tan 10) = 1/√3
**Step 4: Simplifying tan(20 + 80):**
Now, let's go back to the equation from Step 1 and substitute the value we found in Step 3:
(tan 20 + tan 80) / (1 - tan 20 tan 80) = 1/√3
**Step 5: Cross multiplication:**
To simplify further, we can cross multiply the equation:
√3(tan 20 + tan 80) = 1 - tan 20 tan 80
**Step 6: Rearranging terms:**
Rearranging the terms, we get:
√3(tan 20 + tan 80) + tan 20 tan 80 - 1 = 0
**Step 7: Factoring:**
Now, we can factor the equation:
(√3 + tan 20 tan 80)(tan 20 + tan 80) - 1 = 0
**Step 8: Simplifying:**
We know that tan 20 + tan 80 = √3 (from the question statement). Substituting this into our equation, we get:
(√3 + tan 20 tan 80)(√3) - 1 = 0
**Step 9: Distributing and simplifying:**
Expanding the equation, we have:
3 + √3 tan 20 tan 80 - 1 = 0
Simplifying further, we get:
√3 tan 20 tan 80 + 2 = 0
**Step 10: Final result:**
Finally, we subtract 2 from both sides of the equation:
√3 tan 20 tan 80 = -2
Thus, we have proven that tan(20) tan(80) = √3 tan(50).