Physics Exam  >  Physics Questions  >  If1 –i, 7 +i,iand 2 are the eigenvalues... Start Learning for Free
If 1 – i, 7 + i, i and 2 are the eigenvalues of same matrix A. Then what would be the eigenvalues of Aθ.
  • a)
    1 + i, 7 – i, –i, 2
  • b)
    –(1– i), –(7 – i), –i, 2
  • c)
    1 – i, 7 – i, –i, –2 
  • d)
    –(1 – i), –(7 – i), –i, –2
Correct answer is option 'A'. Can you explain this answer?
Verified Answer
If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then wh...
We know that, if λ is an eigenvalue of A. Then  will be the eigenvalue of  Aθ.
So, the conjugates of eigenvalues of A will give the eigenvalues for Aθ.
The correct answer is: 1 + i, 7 – i, –i, 2
View all questions of this test
Explore Courses for Physics exam
If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then what would be the eigenvalues ofAθ.a)1 +i, 7 –i, –i, 2b)–(1–i), –(7 –i), –i, 2c)1 –i, 7 –i, –i, –2d)–(1 –i), –(7 –i), –i, –2Correct answer is option 'A'. Can you explain this answer?
Question Description
If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then what would be the eigenvalues ofAθ.a)1 +i, 7 –i, –i, 2b)–(1–i), –(7 –i), –i, 2c)1 –i, 7 –i, –i, –2d)–(1 –i), –(7 –i), –i, –2Correct answer is option 'A'. Can you explain this answer? for Physics 2024 is part of Physics preparation. The Question and answers have been prepared according to the Physics exam syllabus. Information about If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then what would be the eigenvalues ofAθ.a)1 +i, 7 –i, –i, 2b)–(1–i), –(7 –i), –i, 2c)1 –i, 7 –i, –i, –2d)–(1 –i), –(7 –i), –i, –2Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for Physics 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then what would be the eigenvalues ofAθ.a)1 +i, 7 –i, –i, 2b)–(1–i), –(7 –i), –i, 2c)1 –i, 7 –i, –i, –2d)–(1 –i), –(7 –i), –i, –2Correct answer is option 'A'. Can you explain this answer?.
Solutions for If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then what would be the eigenvalues ofAθ.a)1 +i, 7 –i, –i, 2b)–(1–i), –(7 –i), –i, 2c)1 –i, 7 –i, –i, –2d)–(1 –i), –(7 –i), –i, –2Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for Physics. Download more important topics, notes, lectures and mock test series for Physics Exam by signing up for free.
Here you can find the meaning of If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then what would be the eigenvalues ofAθ.a)1 +i, 7 –i, –i, 2b)–(1–i), –(7 –i), –i, 2c)1 –i, 7 –i, –i, –2d)–(1 –i), –(7 –i), –i, –2Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then what would be the eigenvalues ofAθ.a)1 +i, 7 –i, –i, 2b)–(1–i), –(7 –i), –i, 2c)1 –i, 7 –i, –i, –2d)–(1 –i), –(7 –i), –i, –2Correct answer is option 'A'. Can you explain this answer?, a detailed solution for If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then what would be the eigenvalues ofAθ.a)1 +i, 7 –i, –i, 2b)–(1–i), –(7 –i), –i, 2c)1 –i, 7 –i, –i, –2d)–(1 –i), –(7 –i), –i, –2Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then what would be the eigenvalues ofAθ.a)1 +i, 7 –i, –i, 2b)–(1–i), –(7 –i), –i, 2c)1 –i, 7 –i, –i, –2d)–(1 –i), –(7 –i), –i, –2Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice If1 –i, 7 +i,iand 2 are the eigenvalues of same matrixA. Then what would be the eigenvalues ofAθ.a)1 +i, 7 –i, –i, 2b)–(1–i), –(7 –i), –i, 2c)1 –i, 7 –i, –i, –2d)–(1 –i), –(7 –i), –i, –2Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice Physics tests.
Explore Courses for Physics exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev