In a survey conducted on women regarding their preference of cosmetics...
Step 1: Question statement and Inferences
We are given that a survey was conducted on some women regarding their preferences of cosmetics. The results of the survey are as follows:
The percentage of women who use H&S = 40%
The percentage of women who use Pantene = 60%
The percentage of women who use Dove = 30%
Let
X = the percentage of women who use only H&S
Y = the percentage of women who use only Pantene
Z = the percentage of women who use only Dove
P = the percentage of women who use H&S and Pantene
Q = the percentage of women who use Dove and H&S
R = the percentage of women who use Dove and Pantene
S = the percentage of women who use all three products
Now, since there are only 80% women who use at least one of the three brands, there are 20% women who don’t use any of the brands.
Thus,
X + Y + Z + P + Q + R + S = 80% ………… (1)
Step 2: Finding required values
We can also say from the given diagram:
40% = X + P + Q + S ………… (2)
30% = Z + Q + R + S ………… (3)
60% = P + R + Y + S ………… (4)
Adding equation (2), (3), and (4), we get:
130% = (X + Y + Z + P + Q + R + S) + P + Q + R + 2*S
Now, the above expression in brackets is equal to 80% [from equation (1)]
130% = 80% + P + Q + R + 2*S
50% = P + Q + R + 2*20%
P + Q + R = 10%
Step 3: Calculating the final answer
Now, the percentage of women who use more than one brands
= the percentage of women who use two brands + the percentage of women who use three brands
= (P + Q + R) + S
= 10% + 20%
= 30%
Answer: Option (D)
(Note: In this question, a percentage term like 30% denotes 30% ‘of the total women surveyed’. Let the total number be t. Since the base of each percentage term used in the solution is the same – the total number of surveyed women-percentages have been added and subtracted without writing the base – as in, 30% of t – every time. If the base of each percentage term was not the same, it would have been imperative for us to specify % ‘of what’ with each term)