Mechanical Engineering Exam  >  Mechanical Engineering Questions  >  The rod PQ of length L = √2 m, and unif... Start Learning for Free
The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________
    Correct answer is between '7.25,7.75'. Can you explain this answer?
    Verified Answer
    The rod PQ of length L = √2 m, and uniformly distributed mass of...
    M = 10kg, g=10m/sec
    View all questions of this test
    Explore Courses for Mechanical Engineering exam

    Similar Mechanical Engineering Doubts

    Top Courses for Mechanical Engineering

    The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________Correct answer is between '7.25,7.75'. Can you explain this answer?
    Question Description
    The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________Correct answer is between '7.25,7.75'. Can you explain this answer? for Mechanical Engineering 2024 is part of Mechanical Engineering preparation. The Question and answers have been prepared according to the Mechanical Engineering exam syllabus. Information about The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________Correct answer is between '7.25,7.75'. Can you explain this answer? covers all topics & solutions for Mechanical Engineering 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________Correct answer is between '7.25,7.75'. Can you explain this answer?.
    Solutions for The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________Correct answer is between '7.25,7.75'. Can you explain this answer? in English & in Hindi are available as part of our courses for Mechanical Engineering. Download more important topics, notes, lectures and mock test series for Mechanical Engineering Exam by signing up for free.
    Here you can find the meaning of The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________Correct answer is between '7.25,7.75'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________Correct answer is between '7.25,7.75'. Can you explain this answer?, a detailed solution for The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________Correct answer is between '7.25,7.75'. Can you explain this answer? has been provided alongside types of The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________Correct answer is between '7.25,7.75'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice The rod PQ of length L = √2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2/12). At this instant, the magnitude of angular acceleration (in radian/s2) of the rod is ____________Correct answer is between '7.25,7.75'. Can you explain this answer? tests, examples and also practice Mechanical Engineering tests.
    Explore Courses for Mechanical Engineering exam

    Top Courses for Mechanical Engineering

    Explore Courses
    Signup for Free!
    Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
    10M+ students study on EduRev