Question Description
A horizontal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area of 100mm2. Its elastic modulus varies along its length as given by E(x) = 100e-xGPa, Where x is the length coordinate (in m) along the axis of the bar. An axial tensile load of 10 kN is applied at the free end (x=1). The axial displacement of the free end is _______ mm.Correct answer is between '1.70,1.72'. Can you explain this answer? for Mechanical Engineering 2024 is part of Mechanical Engineering preparation. The Question and answers have been prepared
according to
the Mechanical Engineering exam syllabus. Information about A horizontal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area of 100mm2. Its elastic modulus varies along its length as given by E(x) = 100e-xGPa, Where x is the length coordinate (in m) along the axis of the bar. An axial tensile load of 10 kN is applied at the free end (x=1). The axial displacement of the free end is _______ mm.Correct answer is between '1.70,1.72'. Can you explain this answer? covers all topics & solutions for Mechanical Engineering 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for A horizontal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area of 100mm2. Its elastic modulus varies along its length as given by E(x) = 100e-xGPa, Where x is the length coordinate (in m) along the axis of the bar. An axial tensile load of 10 kN is applied at the free end (x=1). The axial displacement of the free end is _______ mm.Correct answer is between '1.70,1.72'. Can you explain this answer?.
Solutions for A horizontal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area of 100mm2. Its elastic modulus varies along its length as given by E(x) = 100e-xGPa, Where x is the length coordinate (in m) along the axis of the bar. An axial tensile load of 10 kN is applied at the free end (x=1). The axial displacement of the free end is _______ mm.Correct answer is between '1.70,1.72'. Can you explain this answer? in English & in Hindi are available as part of our courses for Mechanical Engineering.
Download more important topics, notes, lectures and mock test series for Mechanical Engineering Exam by signing up for free.
Here you can find the meaning of A horizontal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area of 100mm2. Its elastic modulus varies along its length as given by E(x) = 100e-xGPa, Where x is the length coordinate (in m) along the axis of the bar. An axial tensile load of 10 kN is applied at the free end (x=1). The axial displacement of the free end is _______ mm.Correct answer is between '1.70,1.72'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
A horizontal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area of 100mm2. Its elastic modulus varies along its length as given by E(x) = 100e-xGPa, Where x is the length coordinate (in m) along the axis of the bar. An axial tensile load of 10 kN is applied at the free end (x=1). The axial displacement of the free end is _______ mm.Correct answer is between '1.70,1.72'. Can you explain this answer?, a detailed solution for A horizontal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area of 100mm2. Its elastic modulus varies along its length as given by E(x) = 100e-xGPa, Where x is the length coordinate (in m) along the axis of the bar. An axial tensile load of 10 kN is applied at the free end (x=1). The axial displacement of the free end is _______ mm.Correct answer is between '1.70,1.72'. Can you explain this answer? has been provided alongside types of A horizontal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area of 100mm2. Its elastic modulus varies along its length as given by E(x) = 100e-xGPa, Where x is the length coordinate (in m) along the axis of the bar. An axial tensile load of 10 kN is applied at the free end (x=1). The axial displacement of the free end is _______ mm.Correct answer is between '1.70,1.72'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice A horizontal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area of 100mm2. Its elastic modulus varies along its length as given by E(x) = 100e-xGPa, Where x is the length coordinate (in m) along the axis of the bar. An axial tensile load of 10 kN is applied at the free end (x=1). The axial displacement of the free end is _______ mm.Correct answer is between '1.70,1.72'. Can you explain this answer? tests, examples and also practice Mechanical Engineering tests.