Question Description
The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean. As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Although samples of this presumed ancient crust were brought back to Earth by the Apollo 16 mission in 1972, it was not until recently that scientists could successfully date them. Recent analysis of one of the samples, a rock called ferroan anorthosite or FAN, which is believed to be the oldest of the Moon's crustal rocks, has given scientists new insights into the formation of the Moon, suggesting that the Moon may be much younger than currently believed.The sample that had been carefully stored at NASA’s Johnson Space Center had to be extensively pre-cleaned to remove terrestrial contamination. Once the sample was contamination free, the researchers were able to study it. The team analyzed the isotopes of the elements lead and neodymium to place the age of the sample at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals -- zircons from Western Australia -- suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallized. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates -- and therefore the moon itself is much younger than previously believed -- or that this sample does not represent a crystallization product of the original magma ocean. Either scenario requires major revision to existing models for the formation of the Moon.The passage supports which of the following statements?a)In the light of the analysis done on the FAN sample, it is possible that ferroan anorthosite is not a light mineral.b)If the Moon was indeed formed 4.36 billion years ago, then the age of the solar system itself needs to be reconsidered.c)The fact that the moon was not formed at a much later stage than generally believed does not affect the requirement for significant changes in the existing theory of Moon formation.d)A consistent result from multiple isotope dating techniques had never been achieved in any field before the mentioned study on the FAN sample.e)Since the Apollo 16 mission in 1972, scientists have not been able to obtain more samples from the Moon’s crust.Correct answer is option 'C'. Can you explain this answer? for GMAT 2025 is part of GMAT preparation. The Question and answers have been prepared
according to
the GMAT exam syllabus. Information about The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean. As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Although samples of this presumed ancient crust were brought back to Earth by the Apollo 16 mission in 1972, it was not until recently that scientists could successfully date them. Recent analysis of one of the samples, a rock called ferroan anorthosite or FAN, which is believed to be the oldest of the Moon's crustal rocks, has given scientists new insights into the formation of the Moon, suggesting that the Moon may be much younger than currently believed.The sample that had been carefully stored at NASA’s Johnson Space Center had to be extensively pre-cleaned to remove terrestrial contamination. Once the sample was contamination free, the researchers were able to study it. The team analyzed the isotopes of the elements lead and neodymium to place the age of the sample at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals -- zircons from Western Australia -- suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallized. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates -- and therefore the moon itself is much younger than previously believed -- or that this sample does not represent a crystallization product of the original magma ocean. Either scenario requires major revision to existing models for the formation of the Moon.The passage supports which of the following statements?a)In the light of the analysis done on the FAN sample, it is possible that ferroan anorthosite is not a light mineral.b)If the Moon was indeed formed 4.36 billion years ago, then the age of the solar system itself needs to be reconsidered.c)The fact that the moon was not formed at a much later stage than generally believed does not affect the requirement for significant changes in the existing theory of Moon formation.d)A consistent result from multiple isotope dating techniques had never been achieved in any field before the mentioned study on the FAN sample.e)Since the Apollo 16 mission in 1972, scientists have not been able to obtain more samples from the Moon’s crust.Correct answer is option 'C'. Can you explain this answer? covers all topics & solutions for GMAT 2025 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean. As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Although samples of this presumed ancient crust were brought back to Earth by the Apollo 16 mission in 1972, it was not until recently that scientists could successfully date them. Recent analysis of one of the samples, a rock called ferroan anorthosite or FAN, which is believed to be the oldest of the Moon's crustal rocks, has given scientists new insights into the formation of the Moon, suggesting that the Moon may be much younger than currently believed.The sample that had been carefully stored at NASA’s Johnson Space Center had to be extensively pre-cleaned to remove terrestrial contamination. Once the sample was contamination free, the researchers were able to study it. The team analyzed the isotopes of the elements lead and neodymium to place the age of the sample at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals -- zircons from Western Australia -- suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallized. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates -- and therefore the moon itself is much younger than previously believed -- or that this sample does not represent a crystallization product of the original magma ocean. Either scenario requires major revision to existing models for the formation of the Moon.The passage supports which of the following statements?a)In the light of the analysis done on the FAN sample, it is possible that ferroan anorthosite is not a light mineral.b)If the Moon was indeed formed 4.36 billion years ago, then the age of the solar system itself needs to be reconsidered.c)The fact that the moon was not formed at a much later stage than generally believed does not affect the requirement for significant changes in the existing theory of Moon formation.d)A consistent result from multiple isotope dating techniques had never been achieved in any field before the mentioned study on the FAN sample.e)Since the Apollo 16 mission in 1972, scientists have not been able to obtain more samples from the Moon’s crust.Correct answer is option 'C'. Can you explain this answer?.
Solutions for The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean. As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Although samples of this presumed ancient crust were brought back to Earth by the Apollo 16 mission in 1972, it was not until recently that scientists could successfully date them. Recent analysis of one of the samples, a rock called ferroan anorthosite or FAN, which is believed to be the oldest of the Moon's crustal rocks, has given scientists new insights into the formation of the Moon, suggesting that the Moon may be much younger than currently believed.The sample that had been carefully stored at NASA’s Johnson Space Center had to be extensively pre-cleaned to remove terrestrial contamination. Once the sample was contamination free, the researchers were able to study it. The team analyzed the isotopes of the elements lead and neodymium to place the age of the sample at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals -- zircons from Western Australia -- suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallized. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates -- and therefore the moon itself is much younger than previously believed -- or that this sample does not represent a crystallization product of the original magma ocean. Either scenario requires major revision to existing models for the formation of the Moon.The passage supports which of the following statements?a)In the light of the analysis done on the FAN sample, it is possible that ferroan anorthosite is not a light mineral.b)If the Moon was indeed formed 4.36 billion years ago, then the age of the solar system itself needs to be reconsidered.c)The fact that the moon was not formed at a much later stage than generally believed does not affect the requirement for significant changes in the existing theory of Moon formation.d)A consistent result from multiple isotope dating techniques had never been achieved in any field before the mentioned study on the FAN sample.e)Since the Apollo 16 mission in 1972, scientists have not been able to obtain more samples from the Moon’s crust.Correct answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for GMAT.
Download more important topics, notes, lectures and mock test series for GMAT Exam by signing up for free.
Here you can find the meaning of The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean. As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Although samples of this presumed ancient crust were brought back to Earth by the Apollo 16 mission in 1972, it was not until recently that scientists could successfully date them. Recent analysis of one of the samples, a rock called ferroan anorthosite or FAN, which is believed to be the oldest of the Moon's crustal rocks, has given scientists new insights into the formation of the Moon, suggesting that the Moon may be much younger than currently believed.The sample that had been carefully stored at NASA’s Johnson Space Center had to be extensively pre-cleaned to remove terrestrial contamination. Once the sample was contamination free, the researchers were able to study it. The team analyzed the isotopes of the elements lead and neodymium to place the age of the sample at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals -- zircons from Western Australia -- suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallized. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates -- and therefore the moon itself is much younger than previously believed -- or that this sample does not represent a crystallization product of the original magma ocean. Either scenario requires major revision to existing models for the formation of the Moon.The passage supports which of the following statements?a)In the light of the analysis done on the FAN sample, it is possible that ferroan anorthosite is not a light mineral.b)If the Moon was indeed formed 4.36 billion years ago, then the age of the solar system itself needs to be reconsidered.c)The fact that the moon was not formed at a much later stage than generally believed does not affect the requirement for significant changes in the existing theory of Moon formation.d)A consistent result from multiple isotope dating techniques had never been achieved in any field before the mentioned study on the FAN sample.e)Since the Apollo 16 mission in 1972, scientists have not been able to obtain more samples from the Moon’s crust.Correct answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean. As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Although samples of this presumed ancient crust were brought back to Earth by the Apollo 16 mission in 1972, it was not until recently that scientists could successfully date them. Recent analysis of one of the samples, a rock called ferroan anorthosite or FAN, which is believed to be the oldest of the Moon's crustal rocks, has given scientists new insights into the formation of the Moon, suggesting that the Moon may be much younger than currently believed.The sample that had been carefully stored at NASA’s Johnson Space Center had to be extensively pre-cleaned to remove terrestrial contamination. Once the sample was contamination free, the researchers were able to study it. The team analyzed the isotopes of the elements lead and neodymium to place the age of the sample at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals -- zircons from Western Australia -- suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallized. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates -- and therefore the moon itself is much younger than previously believed -- or that this sample does not represent a crystallization product of the original magma ocean. Either scenario requires major revision to existing models for the formation of the Moon.The passage supports which of the following statements?a)In the light of the analysis done on the FAN sample, it is possible that ferroan anorthosite is not a light mineral.b)If the Moon was indeed formed 4.36 billion years ago, then the age of the solar system itself needs to be reconsidered.c)The fact that the moon was not formed at a much later stage than generally believed does not affect the requirement for significant changes in the existing theory of Moon formation.d)A consistent result from multiple isotope dating techniques had never been achieved in any field before the mentioned study on the FAN sample.e)Since the Apollo 16 mission in 1972, scientists have not been able to obtain more samples from the Moon’s crust.Correct answer is option 'C'. Can you explain this answer?, a detailed solution for The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean. As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Although samples of this presumed ancient crust were brought back to Earth by the Apollo 16 mission in 1972, it was not until recently that scientists could successfully date them. Recent analysis of one of the samples, a rock called ferroan anorthosite or FAN, which is believed to be the oldest of the Moon's crustal rocks, has given scientists new insights into the formation of the Moon, suggesting that the Moon may be much younger than currently believed.The sample that had been carefully stored at NASA’s Johnson Space Center had to be extensively pre-cleaned to remove terrestrial contamination. Once the sample was contamination free, the researchers were able to study it. The team analyzed the isotopes of the elements lead and neodymium to place the age of the sample at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals -- zircons from Western Australia -- suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallized. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates -- and therefore the moon itself is much younger than previously believed -- or that this sample does not represent a crystallization product of the original magma ocean. Either scenario requires major revision to existing models for the formation of the Moon.The passage supports which of the following statements?a)In the light of the analysis done on the FAN sample, it is possible that ferroan anorthosite is not a light mineral.b)If the Moon was indeed formed 4.36 billion years ago, then the age of the solar system itself needs to be reconsidered.c)The fact that the moon was not formed at a much later stage than generally believed does not affect the requirement for significant changes in the existing theory of Moon formation.d)A consistent result from multiple isotope dating techniques had never been achieved in any field before the mentioned study on the FAN sample.e)Since the Apollo 16 mission in 1972, scientists have not been able to obtain more samples from the Moon’s crust.Correct answer is option 'C'. Can you explain this answer? has been provided alongside types of The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean. As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Although samples of this presumed ancient crust were brought back to Earth by the Apollo 16 mission in 1972, it was not until recently that scientists could successfully date them. Recent analysis of one of the samples, a rock called ferroan anorthosite or FAN, which is believed to be the oldest of the Moon's crustal rocks, has given scientists new insights into the formation of the Moon, suggesting that the Moon may be much younger than currently believed.The sample that had been carefully stored at NASA’s Johnson Space Center had to be extensively pre-cleaned to remove terrestrial contamination. Once the sample was contamination free, the researchers were able to study it. The team analyzed the isotopes of the elements lead and neodymium to place the age of the sample at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals -- zircons from Western Australia -- suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallized. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates -- and therefore the moon itself is much younger than previously believed -- or that this sample does not represent a crystallization product of the original magma ocean. Either scenario requires major revision to existing models for the formation of the Moon.The passage supports which of the following statements?a)In the light of the analysis done on the FAN sample, it is possible that ferroan anorthosite is not a light mineral.b)If the Moon was indeed formed 4.36 billion years ago, then the age of the solar system itself needs to be reconsidered.c)The fact that the moon was not formed at a much later stage than generally believed does not affect the requirement for significant changes in the existing theory of Moon formation.d)A consistent result from multiple isotope dating techniques had never been achieved in any field before the mentioned study on the FAN sample.e)Since the Apollo 16 mission in 1972, scientists have not been able to obtain more samples from the Moon’s crust.Correct answer is option 'C'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean. As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Although samples of this presumed ancient crust were brought back to Earth by the Apollo 16 mission in 1972, it was not until recently that scientists could successfully date them. Recent analysis of one of the samples, a rock called ferroan anorthosite or FAN, which is believed to be the oldest of the Moon's crustal rocks, has given scientists new insights into the formation of the Moon, suggesting that the Moon may be much younger than currently believed.The sample that had been carefully stored at NASA’s Johnson Space Center had to be extensively pre-cleaned to remove terrestrial contamination. Once the sample was contamination free, the researchers were able to study it. The team analyzed the isotopes of the elements lead and neodymium to place the age of the sample at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals -- zircons from Western Australia -- suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallized. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates -- and therefore the moon itself is much younger than previously believed -- or that this sample does not represent a crystallization product of the original magma ocean. Either scenario requires major revision to existing models for the formation of the Moon.The passage supports which of the following statements?a)In the light of the analysis done on the FAN sample, it is possible that ferroan anorthosite is not a light mineral.b)If the Moon was indeed formed 4.36 billion years ago, then the age of the solar system itself needs to be reconsidered.c)The fact that the moon was not formed at a much later stage than generally believed does not affect the requirement for significant changes in the existing theory of Moon formation.d)A consistent result from multiple isotope dating techniques had never been achieved in any field before the mentioned study on the FAN sample.e)Since the Apollo 16 mission in 1972, scientists have not been able to obtain more samples from the Moon’s crust.Correct answer is option 'C'. Can you explain this answer? tests, examples and also practice GMAT tests.