Question Description
Group QuestionA passage is followed by questions pertaining to the passage. Read the passage and answer the questions. Choose the most appropriate answer.The first beam was circulated through the collider on the morning of 10 September 2008. CERN successfully fired the protons around the tunnel in stages, three kilometres at a time. The particles were fired in a clockwise direction into the accelerator and successfully steered around it at 10:28 local time. The LHC successfully completed its first major test: after a series of trial runs, two white dots flashed on a computer screen showing the protons travelled the full length of the collider. It took less than one hour to guide the stream of particles around its inaugural circuit. CERN next successfully sent a beam of protons in a counterclockwise direction, taking slightly longer at one and a half hours due to a problem with the cryogenics, with the full circuit being completed at 14:59.On 19 September 2008, a quench occurred in about 100 bending magnets in sectors 3 and 4, causing a loss of approximately six tonnes of liquid helium, which was vented into the tunnel, and a temperature rise of about 100 kelvin in some of the affected magnets. Vacuum conditions in the beam pipe were also lost. Shortly after the incident CERN reported that the most likely cause of the problem was a faulty electrical connection between two magnets, and that - due to the time needed to warm up the affected sectors and then cool them back down to operating temperature - it would take at least two months to fix it. Subsequently, CERN released a preliminary analysis of the incident on 16 October 2008, and a more detailed one on 5 December 2008. Both analyses confirmed that the incident was indeed initiated by a faulty electrical connection. A total of 53 magnets were damaged in the incident and were repaired or replaced during the winter shutdown.In the original timeline of the LHC commissioning, the first modest high-energy collisions at a center-of-mass energy of 900 GeV were expected to take place before the end of September 2008, and the LHC was expected to be operating at 10 TeV by the time of the official inauguration on 21 October 2008. However, due to the delay caused by the above- mentioned incident, the collider was not operational until November 2009. Despite the delay,LHC was officially inaugurated on 21 October 2008, in the presence of political leaders, science ministers from CERNs 20 Member States, CERN officials, and members of the worldwide scientific community.On 30 March 2010, LHC set a record for high-energy collisions, by colliding proton beams at a combined energy level of 7 TeV. The attempt was the third that day, after two unsuccessful attempts in which the protons had to be dumped from the collider and new beams had to be injected. The event was described by CERN Director General Rolf Heuer as Its a great day to be a particle physicist. According to a press release, CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.CERN scientists estimate that if the Standard Model is correct, a single Higgs boson may be produced every few hours. At this rate, it may take about two to three years to collect enough data to discover the Higgs boson unambiguously. Similarly, it may take one year or more before sufficient results concerning supersymmetric particles have been gathered to draw meaningful conclusions.The results of the first proton-proton collisions at energies higher than Fermilabs Tevatron proton-antiproton collisions have been published, yielding greater-than-predicted charged hadron production. The CMS paper reports that the increase in the production rate of charged hadrons when the center-of-mass energy goes from 0.9 TeV to 2.36 TeV exceeds the predictions of the theoretical models used in the analysis, with the excess ranging from 10% to 14%, depending upon which model is used. The charged hadrons were primarily mesons (kaons and pions).Q.Whatprecise branch of science is associated with the above passage?a)Practicle Physicsb)Theological Chemistryc)Organic Chemistryd)Particle PhysicsCorrect answer is option 'D'. Can you explain this answer? for CAT 2024 is part of CAT preparation. The Question and answers have been prepared
according to
the CAT exam syllabus. Information about Group QuestionA passage is followed by questions pertaining to the passage. Read the passage and answer the questions. Choose the most appropriate answer.The first beam was circulated through the collider on the morning of 10 September 2008. CERN successfully fired the protons around the tunnel in stages, three kilometres at a time. The particles were fired in a clockwise direction into the accelerator and successfully steered around it at 10:28 local time. The LHC successfully completed its first major test: after a series of trial runs, two white dots flashed on a computer screen showing the protons travelled the full length of the collider. It took less than one hour to guide the stream of particles around its inaugural circuit. CERN next successfully sent a beam of protons in a counterclockwise direction, taking slightly longer at one and a half hours due to a problem with the cryogenics, with the full circuit being completed at 14:59.On 19 September 2008, a quench occurred in about 100 bending magnets in sectors 3 and 4, causing a loss of approximately six tonnes of liquid helium, which was vented into the tunnel, and a temperature rise of about 100 kelvin in some of the affected magnets. Vacuum conditions in the beam pipe were also lost. Shortly after the incident CERN reported that the most likely cause of the problem was a faulty electrical connection between two magnets, and that - due to the time needed to warm up the affected sectors and then cool them back down to operating temperature - it would take at least two months to fix it. Subsequently, CERN released a preliminary analysis of the incident on 16 October 2008, and a more detailed one on 5 December 2008. Both analyses confirmed that the incident was indeed initiated by a faulty electrical connection. A total of 53 magnets were damaged in the incident and were repaired or replaced during the winter shutdown.In the original timeline of the LHC commissioning, the first modest high-energy collisions at a center-of-mass energy of 900 GeV were expected to take place before the end of September 2008, and the LHC was expected to be operating at 10 TeV by the time of the official inauguration on 21 October 2008. However, due to the delay caused by the above- mentioned incident, the collider was not operational until November 2009. Despite the delay,LHC was officially inaugurated on 21 October 2008, in the presence of political leaders, science ministers from CERNs 20 Member States, CERN officials, and members of the worldwide scientific community.On 30 March 2010, LHC set a record for high-energy collisions, by colliding proton beams at a combined energy level of 7 TeV. The attempt was the third that day, after two unsuccessful attempts in which the protons had to be dumped from the collider and new beams had to be injected. The event was described by CERN Director General Rolf Heuer as Its a great day to be a particle physicist. According to a press release, CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.CERN scientists estimate that if the Standard Model is correct, a single Higgs boson may be produced every few hours. At this rate, it may take about two to three years to collect enough data to discover the Higgs boson unambiguously. Similarly, it may take one year or more before sufficient results concerning supersymmetric particles have been gathered to draw meaningful conclusions.The results of the first proton-proton collisions at energies higher than Fermilabs Tevatron proton-antiproton collisions have been published, yielding greater-than-predicted charged hadron production. The CMS paper reports that the increase in the production rate of charged hadrons when the center-of-mass energy goes from 0.9 TeV to 2.36 TeV exceeds the predictions of the theoretical models used in the analysis, with the excess ranging from 10% to 14%, depending upon which model is used. The charged hadrons were primarily mesons (kaons and pions).Q.Whatprecise branch of science is associated with the above passage?a)Practicle Physicsb)Theological Chemistryc)Organic Chemistryd)Particle PhysicsCorrect answer is option 'D'. Can you explain this answer? covers all topics & solutions for CAT 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for Group QuestionA passage is followed by questions pertaining to the passage. Read the passage and answer the questions. Choose the most appropriate answer.The first beam was circulated through the collider on the morning of 10 September 2008. CERN successfully fired the protons around the tunnel in stages, three kilometres at a time. The particles were fired in a clockwise direction into the accelerator and successfully steered around it at 10:28 local time. The LHC successfully completed its first major test: after a series of trial runs, two white dots flashed on a computer screen showing the protons travelled the full length of the collider. It took less than one hour to guide the stream of particles around its inaugural circuit. CERN next successfully sent a beam of protons in a counterclockwise direction, taking slightly longer at one and a half hours due to a problem with the cryogenics, with the full circuit being completed at 14:59.On 19 September 2008, a quench occurred in about 100 bending magnets in sectors 3 and 4, causing a loss of approximately six tonnes of liquid helium, which was vented into the tunnel, and a temperature rise of about 100 kelvin in some of the affected magnets. Vacuum conditions in the beam pipe were also lost. Shortly after the incident CERN reported that the most likely cause of the problem was a faulty electrical connection between two magnets, and that - due to the time needed to warm up the affected sectors and then cool them back down to operating temperature - it would take at least two months to fix it. Subsequently, CERN released a preliminary analysis of the incident on 16 October 2008, and a more detailed one on 5 December 2008. Both analyses confirmed that the incident was indeed initiated by a faulty electrical connection. A total of 53 magnets were damaged in the incident and were repaired or replaced during the winter shutdown.In the original timeline of the LHC commissioning, the first modest high-energy collisions at a center-of-mass energy of 900 GeV were expected to take place before the end of September 2008, and the LHC was expected to be operating at 10 TeV by the time of the official inauguration on 21 October 2008. However, due to the delay caused by the above- mentioned incident, the collider was not operational until November 2009. Despite the delay,LHC was officially inaugurated on 21 October 2008, in the presence of political leaders, science ministers from CERNs 20 Member States, CERN officials, and members of the worldwide scientific community.On 30 March 2010, LHC set a record for high-energy collisions, by colliding proton beams at a combined energy level of 7 TeV. The attempt was the third that day, after two unsuccessful attempts in which the protons had to be dumped from the collider and new beams had to be injected. The event was described by CERN Director General Rolf Heuer as Its a great day to be a particle physicist. According to a press release, CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.CERN scientists estimate that if the Standard Model is correct, a single Higgs boson may be produced every few hours. At this rate, it may take about two to three years to collect enough data to discover the Higgs boson unambiguously. Similarly, it may take one year or more before sufficient results concerning supersymmetric particles have been gathered to draw meaningful conclusions.The results of the first proton-proton collisions at energies higher than Fermilabs Tevatron proton-antiproton collisions have been published, yielding greater-than-predicted charged hadron production. The CMS paper reports that the increase in the production rate of charged hadrons when the center-of-mass energy goes from 0.9 TeV to 2.36 TeV exceeds the predictions of the theoretical models used in the analysis, with the excess ranging from 10% to 14%, depending upon which model is used. The charged hadrons were primarily mesons (kaons and pions).Q.Whatprecise branch of science is associated with the above passage?a)Practicle Physicsb)Theological Chemistryc)Organic Chemistryd)Particle PhysicsCorrect answer is option 'D'. Can you explain this answer?.
Solutions for Group QuestionA passage is followed by questions pertaining to the passage. Read the passage and answer the questions. Choose the most appropriate answer.The first beam was circulated through the collider on the morning of 10 September 2008. CERN successfully fired the protons around the tunnel in stages, three kilometres at a time. The particles were fired in a clockwise direction into the accelerator and successfully steered around it at 10:28 local time. The LHC successfully completed its first major test: after a series of trial runs, two white dots flashed on a computer screen showing the protons travelled the full length of the collider. It took less than one hour to guide the stream of particles around its inaugural circuit. CERN next successfully sent a beam of protons in a counterclockwise direction, taking slightly longer at one and a half hours due to a problem with the cryogenics, with the full circuit being completed at 14:59.On 19 September 2008, a quench occurred in about 100 bending magnets in sectors 3 and 4, causing a loss of approximately six tonnes of liquid helium, which was vented into the tunnel, and a temperature rise of about 100 kelvin in some of the affected magnets. Vacuum conditions in the beam pipe were also lost. Shortly after the incident CERN reported that the most likely cause of the problem was a faulty electrical connection between two magnets, and that - due to the time needed to warm up the affected sectors and then cool them back down to operating temperature - it would take at least two months to fix it. Subsequently, CERN released a preliminary analysis of the incident on 16 October 2008, and a more detailed one on 5 December 2008. Both analyses confirmed that the incident was indeed initiated by a faulty electrical connection. A total of 53 magnets were damaged in the incident and were repaired or replaced during the winter shutdown.In the original timeline of the LHC commissioning, the first modest high-energy collisions at a center-of-mass energy of 900 GeV were expected to take place before the end of September 2008, and the LHC was expected to be operating at 10 TeV by the time of the official inauguration on 21 October 2008. However, due to the delay caused by the above- mentioned incident, the collider was not operational until November 2009. Despite the delay,LHC was officially inaugurated on 21 October 2008, in the presence of political leaders, science ministers from CERNs 20 Member States, CERN officials, and members of the worldwide scientific community.On 30 March 2010, LHC set a record for high-energy collisions, by colliding proton beams at a combined energy level of 7 TeV. The attempt was the third that day, after two unsuccessful attempts in which the protons had to be dumped from the collider and new beams had to be injected. The event was described by CERN Director General Rolf Heuer as Its a great day to be a particle physicist. According to a press release, CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.CERN scientists estimate that if the Standard Model is correct, a single Higgs boson may be produced every few hours. At this rate, it may take about two to three years to collect enough data to discover the Higgs boson unambiguously. Similarly, it may take one year or more before sufficient results concerning supersymmetric particles have been gathered to draw meaningful conclusions.The results of the first proton-proton collisions at energies higher than Fermilabs Tevatron proton-antiproton collisions have been published, yielding greater-than-predicted charged hadron production. The CMS paper reports that the increase in the production rate of charged hadrons when the center-of-mass energy goes from 0.9 TeV to 2.36 TeV exceeds the predictions of the theoretical models used in the analysis, with the excess ranging from 10% to 14%, depending upon which model is used. The charged hadrons were primarily mesons (kaons and pions).Q.Whatprecise branch of science is associated with the above passage?a)Practicle Physicsb)Theological Chemistryc)Organic Chemistryd)Particle PhysicsCorrect answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT.
Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Group QuestionA passage is followed by questions pertaining to the passage. Read the passage and answer the questions. Choose the most appropriate answer.The first beam was circulated through the collider on the morning of 10 September 2008. CERN successfully fired the protons around the tunnel in stages, three kilometres at a time. The particles were fired in a clockwise direction into the accelerator and successfully steered around it at 10:28 local time. The LHC successfully completed its first major test: after a series of trial runs, two white dots flashed on a computer screen showing the protons travelled the full length of the collider. It took less than one hour to guide the stream of particles around its inaugural circuit. CERN next successfully sent a beam of protons in a counterclockwise direction, taking slightly longer at one and a half hours due to a problem with the cryogenics, with the full circuit being completed at 14:59.On 19 September 2008, a quench occurred in about 100 bending magnets in sectors 3 and 4, causing a loss of approximately six tonnes of liquid helium, which was vented into the tunnel, and a temperature rise of about 100 kelvin in some of the affected magnets. Vacuum conditions in the beam pipe were also lost. Shortly after the incident CERN reported that the most likely cause of the problem was a faulty electrical connection between two magnets, and that - due to the time needed to warm up the affected sectors and then cool them back down to operating temperature - it would take at least two months to fix it. Subsequently, CERN released a preliminary analysis of the incident on 16 October 2008, and a more detailed one on 5 December 2008. Both analyses confirmed that the incident was indeed initiated by a faulty electrical connection. A total of 53 magnets were damaged in the incident and were repaired or replaced during the winter shutdown.In the original timeline of the LHC commissioning, the first modest high-energy collisions at a center-of-mass energy of 900 GeV were expected to take place before the end of September 2008, and the LHC was expected to be operating at 10 TeV by the time of the official inauguration on 21 October 2008. However, due to the delay caused by the above- mentioned incident, the collider was not operational until November 2009. Despite the delay,LHC was officially inaugurated on 21 October 2008, in the presence of political leaders, science ministers from CERNs 20 Member States, CERN officials, and members of the worldwide scientific community.On 30 March 2010, LHC set a record for high-energy collisions, by colliding proton beams at a combined energy level of 7 TeV. The attempt was the third that day, after two unsuccessful attempts in which the protons had to be dumped from the collider and new beams had to be injected. The event was described by CERN Director General Rolf Heuer as Its a great day to be a particle physicist. According to a press release, CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.CERN scientists estimate that if the Standard Model is correct, a single Higgs boson may be produced every few hours. At this rate, it may take about two to three years to collect enough data to discover the Higgs boson unambiguously. Similarly, it may take one year or more before sufficient results concerning supersymmetric particles have been gathered to draw meaningful conclusions.The results of the first proton-proton collisions at energies higher than Fermilabs Tevatron proton-antiproton collisions have been published, yielding greater-than-predicted charged hadron production. The CMS paper reports that the increase in the production rate of charged hadrons when the center-of-mass energy goes from 0.9 TeV to 2.36 TeV exceeds the predictions of the theoretical models used in the analysis, with the excess ranging from 10% to 14%, depending upon which model is used. The charged hadrons were primarily mesons (kaons and pions).Q.Whatprecise branch of science is associated with the above passage?a)Practicle Physicsb)Theological Chemistryc)Organic Chemistryd)Particle PhysicsCorrect answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
Group QuestionA passage is followed by questions pertaining to the passage. Read the passage and answer the questions. Choose the most appropriate answer.The first beam was circulated through the collider on the morning of 10 September 2008. CERN successfully fired the protons around the tunnel in stages, three kilometres at a time. The particles were fired in a clockwise direction into the accelerator and successfully steered around it at 10:28 local time. The LHC successfully completed its first major test: after a series of trial runs, two white dots flashed on a computer screen showing the protons travelled the full length of the collider. It took less than one hour to guide the stream of particles around its inaugural circuit. CERN next successfully sent a beam of protons in a counterclockwise direction, taking slightly longer at one and a half hours due to a problem with the cryogenics, with the full circuit being completed at 14:59.On 19 September 2008, a quench occurred in about 100 bending magnets in sectors 3 and 4, causing a loss of approximately six tonnes of liquid helium, which was vented into the tunnel, and a temperature rise of about 100 kelvin in some of the affected magnets. Vacuum conditions in the beam pipe were also lost. Shortly after the incident CERN reported that the most likely cause of the problem was a faulty electrical connection between two magnets, and that - due to the time needed to warm up the affected sectors and then cool them back down to operating temperature - it would take at least two months to fix it. Subsequently, CERN released a preliminary analysis of the incident on 16 October 2008, and a more detailed one on 5 December 2008. Both analyses confirmed that the incident was indeed initiated by a faulty electrical connection. A total of 53 magnets were damaged in the incident and were repaired or replaced during the winter shutdown.In the original timeline of the LHC commissioning, the first modest high-energy collisions at a center-of-mass energy of 900 GeV were expected to take place before the end of September 2008, and the LHC was expected to be operating at 10 TeV by the time of the official inauguration on 21 October 2008. However, due to the delay caused by the above- mentioned incident, the collider was not operational until November 2009. Despite the delay,LHC was officially inaugurated on 21 October 2008, in the presence of political leaders, science ministers from CERNs 20 Member States, CERN officials, and members of the worldwide scientific community.On 30 March 2010, LHC set a record for high-energy collisions, by colliding proton beams at a combined energy level of 7 TeV. The attempt was the third that day, after two unsuccessful attempts in which the protons had to be dumped from the collider and new beams had to be injected. The event was described by CERN Director General Rolf Heuer as Its a great day to be a particle physicist. According to a press release, CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.CERN scientists estimate that if the Standard Model is correct, a single Higgs boson may be produced every few hours. At this rate, it may take about two to three years to collect enough data to discover the Higgs boson unambiguously. Similarly, it may take one year or more before sufficient results concerning supersymmetric particles have been gathered to draw meaningful conclusions.The results of the first proton-proton collisions at energies higher than Fermilabs Tevatron proton-antiproton collisions have been published, yielding greater-than-predicted charged hadron production. The CMS paper reports that the increase in the production rate of charged hadrons when the center-of-mass energy goes from 0.9 TeV to 2.36 TeV exceeds the predictions of the theoretical models used in the analysis, with the excess ranging from 10% to 14%, depending upon which model is used. The charged hadrons were primarily mesons (kaons and pions).Q.Whatprecise branch of science is associated with the above passage?a)Practicle Physicsb)Theological Chemistryc)Organic Chemistryd)Particle PhysicsCorrect answer is option 'D'. Can you explain this answer?, a detailed solution for Group QuestionA passage is followed by questions pertaining to the passage. Read the passage and answer the questions. Choose the most appropriate answer.The first beam was circulated through the collider on the morning of 10 September 2008. CERN successfully fired the protons around the tunnel in stages, three kilometres at a time. The particles were fired in a clockwise direction into the accelerator and successfully steered around it at 10:28 local time. The LHC successfully completed its first major test: after a series of trial runs, two white dots flashed on a computer screen showing the protons travelled the full length of the collider. It took less than one hour to guide the stream of particles around its inaugural circuit. CERN next successfully sent a beam of protons in a counterclockwise direction, taking slightly longer at one and a half hours due to a problem with the cryogenics, with the full circuit being completed at 14:59.On 19 September 2008, a quench occurred in about 100 bending magnets in sectors 3 and 4, causing a loss of approximately six tonnes of liquid helium, which was vented into the tunnel, and a temperature rise of about 100 kelvin in some of the affected magnets. Vacuum conditions in the beam pipe were also lost. Shortly after the incident CERN reported that the most likely cause of the problem was a faulty electrical connection between two magnets, and that - due to the time needed to warm up the affected sectors and then cool them back down to operating temperature - it would take at least two months to fix it. Subsequently, CERN released a preliminary analysis of the incident on 16 October 2008, and a more detailed one on 5 December 2008. Both analyses confirmed that the incident was indeed initiated by a faulty electrical connection. A total of 53 magnets were damaged in the incident and were repaired or replaced during the winter shutdown.In the original timeline of the LHC commissioning, the first modest high-energy collisions at a center-of-mass energy of 900 GeV were expected to take place before the end of September 2008, and the LHC was expected to be operating at 10 TeV by the time of the official inauguration on 21 October 2008. However, due to the delay caused by the above- mentioned incident, the collider was not operational until November 2009. Despite the delay,LHC was officially inaugurated on 21 October 2008, in the presence of political leaders, science ministers from CERNs 20 Member States, CERN officials, and members of the worldwide scientific community.On 30 March 2010, LHC set a record for high-energy collisions, by colliding proton beams at a combined energy level of 7 TeV. The attempt was the third that day, after two unsuccessful attempts in which the protons had to be dumped from the collider and new beams had to be injected. The event was described by CERN Director General Rolf Heuer as Its a great day to be a particle physicist. According to a press release, CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.CERN scientists estimate that if the Standard Model is correct, a single Higgs boson may be produced every few hours. At this rate, it may take about two to three years to collect enough data to discover the Higgs boson unambiguously. Similarly, it may take one year or more before sufficient results concerning supersymmetric particles have been gathered to draw meaningful conclusions.The results of the first proton-proton collisions at energies higher than Fermilabs Tevatron proton-antiproton collisions have been published, yielding greater-than-predicted charged hadron production. The CMS paper reports that the increase in the production rate of charged hadrons when the center-of-mass energy goes from 0.9 TeV to 2.36 TeV exceeds the predictions of the theoretical models used in the analysis, with the excess ranging from 10% to 14%, depending upon which model is used. The charged hadrons were primarily mesons (kaons and pions).Q.Whatprecise branch of science is associated with the above passage?a)Practicle Physicsb)Theological Chemistryc)Organic Chemistryd)Particle PhysicsCorrect answer is option 'D'. Can you explain this answer? has been provided alongside types of Group QuestionA passage is followed by questions pertaining to the passage. Read the passage and answer the questions. Choose the most appropriate answer.The first beam was circulated through the collider on the morning of 10 September 2008. CERN successfully fired the protons around the tunnel in stages, three kilometres at a time. The particles were fired in a clockwise direction into the accelerator and successfully steered around it at 10:28 local time. The LHC successfully completed its first major test: after a series of trial runs, two white dots flashed on a computer screen showing the protons travelled the full length of the collider. It took less than one hour to guide the stream of particles around its inaugural circuit. CERN next successfully sent a beam of protons in a counterclockwise direction, taking slightly longer at one and a half hours due to a problem with the cryogenics, with the full circuit being completed at 14:59.On 19 September 2008, a quench occurred in about 100 bending magnets in sectors 3 and 4, causing a loss of approximately six tonnes of liquid helium, which was vented into the tunnel, and a temperature rise of about 100 kelvin in some of the affected magnets. Vacuum conditions in the beam pipe were also lost. Shortly after the incident CERN reported that the most likely cause of the problem was a faulty electrical connection between two magnets, and that - due to the time needed to warm up the affected sectors and then cool them back down to operating temperature - it would take at least two months to fix it. Subsequently, CERN released a preliminary analysis of the incident on 16 October 2008, and a more detailed one on 5 December 2008. Both analyses confirmed that the incident was indeed initiated by a faulty electrical connection. A total of 53 magnets were damaged in the incident and were repaired or replaced during the winter shutdown.In the original timeline of the LHC commissioning, the first modest high-energy collisions at a center-of-mass energy of 900 GeV were expected to take place before the end of September 2008, and the LHC was expected to be operating at 10 TeV by the time of the official inauguration on 21 October 2008. However, due to the delay caused by the above- mentioned incident, the collider was not operational until November 2009. Despite the delay,LHC was officially inaugurated on 21 October 2008, in the presence of political leaders, science ministers from CERNs 20 Member States, CERN officials, and members of the worldwide scientific community.On 30 March 2010, LHC set a record for high-energy collisions, by colliding proton beams at a combined energy level of 7 TeV. The attempt was the third that day, after two unsuccessful attempts in which the protons had to be dumped from the collider and new beams had to be injected. The event was described by CERN Director General Rolf Heuer as Its a great day to be a particle physicist. According to a press release, CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.CERN scientists estimate that if the Standard Model is correct, a single Higgs boson may be produced every few hours. At this rate, it may take about two to three years to collect enough data to discover the Higgs boson unambiguously. Similarly, it may take one year or more before sufficient results concerning supersymmetric particles have been gathered to draw meaningful conclusions.The results of the first proton-proton collisions at energies higher than Fermilabs Tevatron proton-antiproton collisions have been published, yielding greater-than-predicted charged hadron production. The CMS paper reports that the increase in the production rate of charged hadrons when the center-of-mass energy goes from 0.9 TeV to 2.36 TeV exceeds the predictions of the theoretical models used in the analysis, with the excess ranging from 10% to 14%, depending upon which model is used. The charged hadrons were primarily mesons (kaons and pions).Q.Whatprecise branch of science is associated with the above passage?a)Practicle Physicsb)Theological Chemistryc)Organic Chemistryd)Particle PhysicsCorrect answer is option 'D'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice Group QuestionA passage is followed by questions pertaining to the passage. Read the passage and answer the questions. Choose the most appropriate answer.The first beam was circulated through the collider on the morning of 10 September 2008. CERN successfully fired the protons around the tunnel in stages, three kilometres at a time. The particles were fired in a clockwise direction into the accelerator and successfully steered around it at 10:28 local time. The LHC successfully completed its first major test: after a series of trial runs, two white dots flashed on a computer screen showing the protons travelled the full length of the collider. It took less than one hour to guide the stream of particles around its inaugural circuit. CERN next successfully sent a beam of protons in a counterclockwise direction, taking slightly longer at one and a half hours due to a problem with the cryogenics, with the full circuit being completed at 14:59.On 19 September 2008, a quench occurred in about 100 bending magnets in sectors 3 and 4, causing a loss of approximately six tonnes of liquid helium, which was vented into the tunnel, and a temperature rise of about 100 kelvin in some of the affected magnets. Vacuum conditions in the beam pipe were also lost. Shortly after the incident CERN reported that the most likely cause of the problem was a faulty electrical connection between two magnets, and that - due to the time needed to warm up the affected sectors and then cool them back down to operating temperature - it would take at least two months to fix it. Subsequently, CERN released a preliminary analysis of the incident on 16 October 2008, and a more detailed one on 5 December 2008. Both analyses confirmed that the incident was indeed initiated by a faulty electrical connection. A total of 53 magnets were damaged in the incident and were repaired or replaced during the winter shutdown.In the original timeline of the LHC commissioning, the first modest high-energy collisions at a center-of-mass energy of 900 GeV were expected to take place before the end of September 2008, and the LHC was expected to be operating at 10 TeV by the time of the official inauguration on 21 October 2008. However, due to the delay caused by the above- mentioned incident, the collider was not operational until November 2009. Despite the delay,LHC was officially inaugurated on 21 October 2008, in the presence of political leaders, science ministers from CERNs 20 Member States, CERN officials, and members of the worldwide scientific community.On 30 March 2010, LHC set a record for high-energy collisions, by colliding proton beams at a combined energy level of 7 TeV. The attempt was the third that day, after two unsuccessful attempts in which the protons had to be dumped from the collider and new beams had to be injected. The event was described by CERN Director General Rolf Heuer as Its a great day to be a particle physicist. According to a press release, CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.CERN scientists estimate that if the Standard Model is correct, a single Higgs boson may be produced every few hours. At this rate, it may take about two to three years to collect enough data to discover the Higgs boson unambiguously. Similarly, it may take one year or more before sufficient results concerning supersymmetric particles have been gathered to draw meaningful conclusions.The results of the first proton-proton collisions at energies higher than Fermilabs Tevatron proton-antiproton collisions have been published, yielding greater-than-predicted charged hadron production. The CMS paper reports that the increase in the production rate of charged hadrons when the center-of-mass energy goes from 0.9 TeV to 2.36 TeV exceeds the predictions of the theoretical models used in the analysis, with the excess ranging from 10% to 14%, depending upon which model is used. The charged hadrons were primarily mesons (kaons and pions).Q.Whatprecise branch of science is associated with the above passage?a)Practicle Physicsb)Theological Chemistryc)Organic Chemistryd)Particle PhysicsCorrect answer is option 'D'. Can you explain this answer? tests, examples and also practice CAT tests.