CAT Exam  >  CAT Questions  >  Answer the question based on the passage give... Start Learning for Free
Answer the question based on the passage given below.
People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life is
partly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents’ occupations are also related to their child’s intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others’. But this “system integrity” idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether people’s reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the body’s integrity to test this idea more fully.
A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps that’s it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this “explanation” is statistical. We are still not sure whether, say, education and occupation “explain” the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.
Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We haven’t yet
come across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.
Q.
Which of the following, if true, would conclusively undermine the author’s stand and recommendations for future research?
  • a)
    Mortality rates vary with changes in medicines and health technology.
  • b)
    Intelligence is merely a function of brain size, which is entirely a genetic endowment.
  • c)
    Male and female intelligence levels differ substantially.
  • d)
    Longevity does not vary from country to country.
  • e)
    Many IQ tests fail to accurately map human intelligence.
Correct answer is option 'B'. Can you explain this answer?
Verified Answer
Answer the question based on the passage given below.People with highe...
The author's stand is that intelligence is a function of genetic and environmental factors and hence to establish a connection between intelligence and mortality, we need to conduct research keeping in mind these two factors.
Option 2 questions this basic premise by stating that intelligence is entirely genetic and has no influence of the environment.
Option 1, even if correct, would affect the entire population equally and thus, does not undermine the author’s position.
Options 3 is a ‘red herring’ or stray argument, made to mislead. The author has made no mention of gender as a basis in the longevity-intelligence equation.
Option 4 strengthens rather than weakening the author's stand.
Option 5, even if true, does not necessarily negate the author’s work. We cannot presume that all IQ tests are inconclusive, just because many such tests were found to be inadequate.
Hence, the correct answer is option 2.
View all questions of this test
Explore Courses for CAT exam

Similar CAT Doubts

Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following would the author agree with?

Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following is correct according to the passage?

Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Why does the author mention the need for further studies involving twins?I. Twins have similar genetic and environmental factors influencing them.II.To ascertain the effects on genetic and environmental make-up.III.To establish a link between what causes intelligent people to live longer.

Instructions:The passage given below is followed by a question. Choose the most appropriate answer. As defined by the geographer Yi-Fu Tuan, topophilia is the affective bond between people and place. His 1974 book set forth a wide-ranging exploration of how the emotive ties with the material environment vary greatly from person to person and in intensity, subtlety, and mode of expression. Factors influencing one’s depth of response to the environment include cultural background, gender, race, and historical circumstance, and Tuan also argued that there is a biological and sensory element. Topophilia might not be the strongest of human emotions— indeed, many people feel utterly indifferent toward the environments that shape their lives— but when activated it has the power to elevate a place to become the carrier of emotionally charged events or to be perceived as a symbol. Aesthetic appreciation is one way in which people respond to the environment. A brilliantly coloured rainbow after gloomy afternoon showers, a busy city street alive with human interaction—one might experience the beauty of such landscapes that had seemed quite ordinary only moments before or that are being newly discovered. This is quite the opposite of a second topophilic bond, namely that of the acquired taste for certain landscapes and places that one knows well. When a place is a home, or when space has become the locus of memories or the means of gaining a livelihood, it frequently evokes a deeper set of attachments than those predicated purely on the visual. A third response to the environment also depends on the human senses but maybe tactile and olfactory, namely a delight in the feel and smell of the air, water, and the earth. Topophilia—and its a very close conceptual twin, sense of place—is an experience that, however elusive, has inspired recent architects and planners. Most notably, new urbanism seeks to counter the perceived placelessness of modern suburbs and the decline of central cities through neo-traditional design motifs. Although motivated by good intentions, such attempts to create places rich in meaning are perhaps bound to disappoint. As Tuan noted, purely aesthetic responses often are suddenly revealed, but their intensity rarely is long-lasting. Topophilia is difficult to design for and impossible to quantify, and its most articulate interpreters have been self-reflective philosophers such as Henry David Thoreau, evoking a marvellously intricate sense of place at Walden Pond, and Tuan, describing his deep affinity for the desert. Topophilia connotes a positive relationship, but it often is useful to explore the darker affiliations between people and place. Patriotism, literally meaning the love of one’s terra patria or homeland, has long been cultivated by governing elites for a range of nationalist projects, including war preparation and ethnic cleansing. Residents of upscale residential developments have disclosed how important it is to maintain their community’s distinct identity, often by casting themselves in a superior social position and by reinforcing class and racial differences. And just as a beloved landscape is suddenly revealed, so too may landscapes of fear cast a dark shadow over a place that makes one feel a sense of dread or anxiety—or topophobia. Q.In the last paragraph, the author uses the example of “Residents of upscale residential developments” to illustrate the

Directions: Read the passage carefully and select the best answer out of the given four alternatives. Malnutrition affects millions of people worldwide and is responsible for one-fifth of deaths in children under the age of five. Children can also experience impaired cognitive development and stunted growth. According to Finlay and UBC PhD student Eric Brown, malnutrition can be difficult to treat because it affects the good bacteria that live in the gut. People suffering from malnutrition often show signs of a disease known as environmental enteropathy, which is an inflammatory disorder of the small intestine and is likely caused by ingesting pathogenic fecal bacteria early in life from a contaminated environment. This shifts the balance of the original healthy bacteria in the gut and leads to poor absorption of nutrients. The study, published in Nature Communications, explains how the research team developed a mouse model to reproduce the symptoms of environmental enteropathy and malnourishment. "We were able to see how a malnourished diet has a strong, measurable impact on the microbes in the small intestine," said Brown. "This new model gives us the opportunity to examine the impact of malnutrition on gut microbiology and assess the role of infections." Pathogenic bacterial infections like salmonella and E. coli are huge problems in developing countries because they are much more harmful to people suffering from malnutrition, leading to chronic diarrhea and inflammation. "Treatments and vaccines created in developed nations and tested on healthy people often dont work in malnourished populations," said Finlay, distinguished professor at UBCs Peter Wall Institute for Advanced Studies. "People suffering from malnutrition respond differently." With an animal model, Finlay said researchers will be better able to test treatments and understand how malnutrition impacts a childs development. Q.Why is malnutritiondifficult to be treated?

Top Courses for CAT

Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following, if true, would conclusively undermine the authors stand and recommendations for future research?a)Mortality rates vary with changes in medicines and health technology.b)Intelligence is merely a function of brain size, which is entirely a genetic endowment.c)Male and female intelligence levels differ substantially.d)Longevity does not vary from country to country.e)Many IQ tests fail to accurately map human intelligence.Correct answer is option 'B'. Can you explain this answer?
Question Description
Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following, if true, would conclusively undermine the authors stand and recommendations for future research?a)Mortality rates vary with changes in medicines and health technology.b)Intelligence is merely a function of brain size, which is entirely a genetic endowment.c)Male and female intelligence levels differ substantially.d)Longevity does not vary from country to country.e)Many IQ tests fail to accurately map human intelligence.Correct answer is option 'B'. Can you explain this answer? for CAT 2024 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following, if true, would conclusively undermine the authors stand and recommendations for future research?a)Mortality rates vary with changes in medicines and health technology.b)Intelligence is merely a function of brain size, which is entirely a genetic endowment.c)Male and female intelligence levels differ substantially.d)Longevity does not vary from country to country.e)Many IQ tests fail to accurately map human intelligence.Correct answer is option 'B'. Can you explain this answer? covers all topics & solutions for CAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following, if true, would conclusively undermine the authors stand and recommendations for future research?a)Mortality rates vary with changes in medicines and health technology.b)Intelligence is merely a function of brain size, which is entirely a genetic endowment.c)Male and female intelligence levels differ substantially.d)Longevity does not vary from country to country.e)Many IQ tests fail to accurately map human intelligence.Correct answer is option 'B'. Can you explain this answer?.
Solutions for Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following, if true, would conclusively undermine the authors stand and recommendations for future research?a)Mortality rates vary with changes in medicines and health technology.b)Intelligence is merely a function of brain size, which is entirely a genetic endowment.c)Male and female intelligence levels differ substantially.d)Longevity does not vary from country to country.e)Many IQ tests fail to accurately map human intelligence.Correct answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following, if true, would conclusively undermine the authors stand and recommendations for future research?a)Mortality rates vary with changes in medicines and health technology.b)Intelligence is merely a function of brain size, which is entirely a genetic endowment.c)Male and female intelligence levels differ substantially.d)Longevity does not vary from country to country.e)Many IQ tests fail to accurately map human intelligence.Correct answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following, if true, would conclusively undermine the authors stand and recommendations for future research?a)Mortality rates vary with changes in medicines and health technology.b)Intelligence is merely a function of brain size, which is entirely a genetic endowment.c)Male and female intelligence levels differ substantially.d)Longevity does not vary from country to country.e)Many IQ tests fail to accurately map human intelligence.Correct answer is option 'B'. Can you explain this answer?, a detailed solution for Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following, if true, would conclusively undermine the authors stand and recommendations for future research?a)Mortality rates vary with changes in medicines and health technology.b)Intelligence is merely a function of brain size, which is entirely a genetic endowment.c)Male and female intelligence levels differ substantially.d)Longevity does not vary from country to country.e)Many IQ tests fail to accurately map human intelligence.Correct answer is option 'B'. Can you explain this answer? has been provided alongside types of Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following, if true, would conclusively undermine the authors stand and recommendations for future research?a)Mortality rates vary with changes in medicines and health technology.b)Intelligence is merely a function of brain size, which is entirely a genetic endowment.c)Male and female intelligence levels differ substantially.d)Longevity does not vary from country to country.e)Many IQ tests fail to accurately map human intelligence.Correct answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Answer the question based on the passage given below.People with higher intelligence test scores in childhood and early adulthood tend to live longer. This result has been found among people from Australia, Denmark, England and Wales, Scotland, Sweden, and the United States. In fact, it has been found within every population that has been studied. Indeed, the impact of intelligence on mortality rivals well-known risk factors for illness and death, such as high blood pressure, being overweight, high blood glucose, and high cholesterol. Its effect is almost as important as that of smoking. Differences in human intelligence have environmental and genetic causes. An intelligence test score in early life ispartly a record of what the environment has wrought on the brain and the rest of the body up to that time. Babies who have lower birth weights, for example, are more prone to chronic illnesses later in life. They also have, on average, slightly lower intelligence. But tests of whether birth weight might explain some of the link between intelligence and mortality have found no connection. Parents occupations are also related to their childs intelligence and later risk of illness: children from more privileged backgrounds tend to have higher intelligence and better health, and to live longer. However, there is no convincing evidence that parental background explains the link between higher intelligence and longer life. Other researchers have viewed intelligence test scores as possibly more than just an indicator of an efficient brain. After all, the brain is just one organ of the body, so people whose brains work well in early life may also have other organs and systems that are more efficient than others. But this system integrity idea is somewhat vague and difficult to test. The best we have done to date has been to examine whether peoples reaction speeds are related to intelligence and to mortality. They are. Reaction-time tests involve little thinking, and merely ask people to respond as fast as they can to simple stimuli. People who react faster have, on average, higher intelligence scores and live longer. But we need to think of better measures of the bodys integrity to test this idea more fully.A third potential explanation is that intelligence is about good decision-making. Every day, as we live our lives, we make decisions about our health: what, when, and how much to eat; how much exercise to take; how to look after ourselves if we have an illness; and so forth. Therefore, the reason that intelligence and death are linked might be that people with higher intelligence in childhood make better decisions about health, and have healthier behaviors. As adults, they tend to have better diets, exercise more, gain less weight, have fewer hangovers, and so on. So far, so good. But we do not yet have the full story. There have not been any studies with data on childhood intelligence, lots of subsequent data on adult health behaviors, and then a long-term follow-up for deaths. And only such a study could tell us whether it is these healthy behaviors that explain the link between intelligence and death. A fourth type of explanation is that people with higher intelligence in childhood tend to attain better educational qualifications, work in more professional jobs, have higher incomes, and live in more affluent areas. These variables are related to living longer, too. So, perhaps thats it: higher intelligence buys people into safer and more health-friendly environments. Certainly, in some studies, social class in adulthood seems to explain a lot of the link between intelligence and death. The problem is that this explanation is statistical. We are still not sure whether, say, education and occupation explain the effect of intelligence on health, or whether they are, in effect, merely surrogate measures of intelligence. Researchers have also searched for clues about the intelligence- mortality link in specific types of death. This has been revealing. Lower intelligence in early life is associated with a greater likelihood of dying from, for example, cardiovascular disease, accidents, suicide, and homicide. The evidence for cancer is less certain. As we have come across these specific findings, we have realized that each link might need a different explanation.Finally, we know that how intelligent we are and how long we shall live are caused by both environmental and genetic influences. There are experimental designs, using twins, that can find out the extent to which intelligence and mortality are linked because they share environmental and genetic influences. Among the most informative exercises we can undertake in cognitive epidemiology is to obtain a large group of twins on whom there is data on early-life intelligence and who were tracked for a long time to find out who had died. We havent yetcome across a large enough group of twins with such data. Finding one is a priority. The ultimate aim of this research is to find out what intelligent people have and do that enables them to live longer. Once we know that, we will be able to share and apply that knowledge with the aim of achieving optimal health for all.Q.Which of the following, if true, would conclusively undermine the authors stand and recommendations for future research?a)Mortality rates vary with changes in medicines and health technology.b)Intelligence is merely a function of brain size, which is entirely a genetic endowment.c)Male and female intelligence levels differ substantially.d)Longevity does not vary from country to country.e)Many IQ tests fail to accurately map human intelligence.Correct answer is option 'B'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev