Let (p + 1), (p + 2),..., (p + n) and (g + 1), (g + 2), ...(q + n) are the two series.
(p + 1) + (P + 2) + ... + (p + n) = np + n(n -1 )/2
(q + 1) + (q + 2) + ... + (q + n) = nq +n (n -1 )/2
Without loss o f generality, let p > q
np + n(n —1)/2 - nq + n(n -1)/2 = n (p - q) = n
2(p - q) = n
1. The largest number = (p + n) and the smallest number is (q + 1). (p + n) - (q + 1) = (p - q) + (n - 1) =n + (n - 1) = 2n - 1
2. (p + n) and (g + n) are the two largest terms of the two series. (p + n) - 2(q + n)
3. Average o f (p + 1), (p + 2)..... (p + n) = p + (n - 1 )/2
Average of (q + 1), (q + 2), ...(q + n) = q + (n -1 )/2
p + (n -1)/2 - q + (n -1)/2 = n
Thus, all the options are false.
Hence, option 4.