Class 11 Exam  >  Class 11 Questions  >  Damping is due toa)electrostatic forcesb)resi... Start Learning for Free
Damping is due to
  • a)
    electrostatic forces
  • b)
    resistive forces like air drag, friction etc.
  • c)
    reaction forces
  • d)
    conservative forces like gravity
Correct answer is option 'B'. Can you explain this answer?
Verified Answer
Damping is due toa)electrostatic forcesb)resistive forces like air dra...
Damping is due to resistive forces like air drag, friction etc.
View all questions of this test
Most Upvoted Answer
Damping is due toa)electrostatic forcesb)resistive forces like air dra...
Damping refers to the gradual decrease in the amplitude of oscillations or vibrations over time. It occurs in various physical systems and is primarily caused by resistive forces like air drag, friction, and other forms of energy dissipation. These forces oppose the motion of the system and convert its kinetic energy into other forms of energy such as heat. Among the given options, resistive forces like air drag and friction are the main contributors to damping.

Explanation:

1. What is Damping?
Damping is a phenomenon that occurs when an oscillating or vibrating system loses energy gradually over time. It is characterized by a decrease in the amplitude of the oscillations or vibrations. Damping can be desirable or undesirable depending on the specific application.

2. Types of Damping:
There are different types of damping, including viscous damping, dry friction damping, and air damping. However, all these types are caused by the resistive forces that oppose the motion of the system.

3. Resistive Forces:
Resistive forces, such as air drag and friction, play a crucial role in damping. These forces act in the opposite direction to the motion of the system and dissipate its energy. Here is a brief explanation of each type of resistive force:

- Air Drag: When an object moves through a fluid medium, such as air or water, it experiences air drag. This force depends on the velocity of the object and the properties of the fluid. In the case of oscillating systems, air drag dissipates energy during each cycle, leading to damping.

- Friction: Friction is a force that opposes the relative motion between two surfaces in contact. It converts the kinetic energy of the system into heat, thereby reducing the amplitude of oscillations or vibrations.

4. Other Options:
The other options provided in the question are not accurate explanations for damping:

- Electrostatic Forces: Electrostatic forces are related to the interaction between charged particles and do not directly contribute to damping.

- Reaction Forces: Reaction forces are forces that occur in response to an action. While they can affect the motion of a system, they do not directly cause damping.

- Conservative Forces like Gravity: Conservative forces, such as gravity, do not dissipate energy. Instead, they store potential energy that can be converted back into kinetic energy, leading to periodic motion without damping.

Therefore, the correct answer is option 'B' - resistive forces like air drag and friction. These forces oppose the motion of the system and cause the gradual decrease in the amplitude of oscillations or vibrations, known as damping.
Free Test
Community Answer
Damping is due toa)electrostatic forcesb)resistive forces like air dra...
Damping applied opposite to velocity
it resist the motion
Attention Class 11 Students!
To make sure you are not studying endlessly, EduRev has designed Class 11 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 11.
Explore Courses for Class 11 exam

Similar Class 11 Doubts

Attempt All sub parts from each question.Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.Methods of producing damping torque:(i) Air friction damping(ii) Fluid friction damping(iii) Eddy current dampingAir Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.Q. The most efficient form of damping is

Attempt All sub parts from each question.Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.Methods of producing damping torque:(i) Air friction damping(ii) Fluid friction damping(iii) Eddy current dampingAir Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.Q. In Fluid Friction Damping the amount of damping torque

Attempt All sub parts from each question.Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.Methods of producing damping torque:(i) Air friction damping(ii) Fluid friction damping(iii) Eddy current dampingAir Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.Q. When the moving system of a measuring instrument moves rapidly but smoothly to its final steady position, the instrument is said to be

Attempt All sub parts from each question.Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.Methods of producing damping torque:(i) Air friction damping(ii) Fluid friction damping(iii) Eddy current dampingAir Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.Q. Damping is required to be provided to the moving part of measuring instrument

Attempt All sub parts from each question.Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.Methods of producing damping torque:(i) Air friction damping(ii) Fluid friction damping(iii) Eddy current dampingAir Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.Q. In the following deflection-time graphs which one is ideal for a sensitive and steady measuring instrument?

Top Courses for Class 11

Damping is due toa)electrostatic forcesb)resistive forces like air drag, friction etc.c)reaction forcesd)conservative forces like gravityCorrect answer is option 'B'. Can you explain this answer?
Question Description
Damping is due toa)electrostatic forcesb)resistive forces like air drag, friction etc.c)reaction forcesd)conservative forces like gravityCorrect answer is option 'B'. Can you explain this answer? for Class 11 2024 is part of Class 11 preparation. The Question and answers have been prepared according to the Class 11 exam syllabus. Information about Damping is due toa)electrostatic forcesb)resistive forces like air drag, friction etc.c)reaction forcesd)conservative forces like gravityCorrect answer is option 'B'. Can you explain this answer? covers all topics & solutions for Class 11 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Damping is due toa)electrostatic forcesb)resistive forces like air drag, friction etc.c)reaction forcesd)conservative forces like gravityCorrect answer is option 'B'. Can you explain this answer?.
Solutions for Damping is due toa)electrostatic forcesb)resistive forces like air drag, friction etc.c)reaction forcesd)conservative forces like gravityCorrect answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for Class 11. Download more important topics, notes, lectures and mock test series for Class 11 Exam by signing up for free.
Here you can find the meaning of Damping is due toa)electrostatic forcesb)resistive forces like air drag, friction etc.c)reaction forcesd)conservative forces like gravityCorrect answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Damping is due toa)electrostatic forcesb)resistive forces like air drag, friction etc.c)reaction forcesd)conservative forces like gravityCorrect answer is option 'B'. Can you explain this answer?, a detailed solution for Damping is due toa)electrostatic forcesb)resistive forces like air drag, friction etc.c)reaction forcesd)conservative forces like gravityCorrect answer is option 'B'. Can you explain this answer? has been provided alongside types of Damping is due toa)electrostatic forcesb)resistive forces like air drag, friction etc.c)reaction forcesd)conservative forces like gravityCorrect answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Damping is due toa)electrostatic forcesb)resistive forces like air drag, friction etc.c)reaction forcesd)conservative forces like gravityCorrect answer is option 'B'. Can you explain this answer? tests, examples and also practice Class 11 tests.
Explore Courses for Class 11 exam

Top Courses for Class 11

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev