Class 12 Exam  >  Class 12 Questions  >  Alternating current can not be measured by di... Start Learning for Free
Alternating current can not be measured by direct current meters, because –
  • a)
    Alternating current can not pass through an ammeter
  • b)
    The average value of current for complete cycle is zero
  • c)
    Some amount of alternating current is destroyed in the ammeter.
  • d)
    None
Correct answer is option 'B'. Can you explain this answer?
Most Upvoted Answer
Alternating current can not be measured by direct current meters, beca...
Average current in Ac is sin wave(zero to peak and back to same position) so average current is 0..
Free Test
Community Answer
Alternating current can not be measured by direct current meters, beca...
The alternating current changes its direction and magnitude, it becomes zero twice in a complete cycle. In one half cycle current flows in one direction and changes its direction for other half cycle. So, it is not possible by direct current meters to read such a high fluctuation in a second due to inertia and hence, no deflection accounted. Hence, alternating current can not be measured by direct current meters, because the average value of current for the complete cycle is zero.
Explore Courses for Class 12 exam

Similar Class 12 Doubts

Read the following text and answer the following questions on the basis of the same:Shunt resistance: The ammeter shunt is the device which provides the low resistance path to the flow of current. It is connected in parallel with the ammeter. In some ammeter the shunt is in-built inside the instrument while in others it is externally connected to the circuit. Ammeters are designed for measurement of low current. For measuring high current, the shunt is connected in parallel to the ammeter. The significant portion of the current passes to the shunt because of the low resistance path and little amount of current passes through the ammeter. The shunt is connected in parallel to the ammeter because of which the voltage drops across the meter and shunt remain the same. Thus, the movement of the pointer is not affected by the shunt. Let us consider that the current to be measured is I. The circuit has ammeter and shunt connected parallel to each other. The ammeter is designed for measurement of small current say, Im. The magnitude of the current I passes through the meter is very high, and it will burn the meter. So, for measuring the current I the shunt is required in the circuit. As the shunt connects in parallel with the ammeter, thus the same voltage drops occur between them:IShRSH = ImRm∴ RSH = ImRm/ISHShunt current ISH = I – ImSo, RSH = ImRm/(I – Im)∴ I/Im = 1 + (Rm/RSH)The ratio of the total current to the current required for the movement of the ammeter coil is called the multiplying power of the shunt.∴ The multiplying power = m = I/ImRSH = Rm / (m – 1)The following are the requirements of the shunt.• The resistance of the shunt should remain constant with time.• The temperature of the material should remain the same even though substantial current flows through the circuit.What will be the value of the shunt resistance if the ammeter coil resistance is 1Ω and multiplying power is 100?

Read the following text and answer the following questions on the basis of the same:Shunt resistance: The ammeter shunt is the device which provides the low resistance path to the flow of current. It is connected in parallel with the ammeter. In some ammeter the shunt is in-built inside the instrument while in others it is externally connected to the circuit. Ammeters are designed for measurement of low current. For measuring high current, the shunt is connected in parallel to the ammeter. The significant portion of the current passes to the shunt because of the low resistance path and little amount of current passes through the ammeter. The shunt is connected in parallel to the ammeter because of which the voltage drops across the meter and shunt remain the same. Thus, the movement of the pointer is not affected by the shunt. Let us consider that the current to be measured is I. The circuit has ammeter and shunt connected parallel to each other. The ammeter is designed for measurement of small current say, Im. The magnitude of the current I passes through the meter is very high, and it will burn the meter. So, for measuring the current I the shunt is required in the circuit. As the shunt connects in parallel with the ammeter, thus the same voltage drops occur between them:IShRSH = ImRm∴ RSH = ImRm/ISHShunt current ISH = I – ImSo, RSH = ImRm/(I – Im)∴ I/Im = 1 + (Rm/RSH)The ratio of the total current to the current required for the movement of the ammeter coil is called the multiplying power of the shunt.∴ The multiplying power = m = I/ImRSH = Rm / (m – 1)The following are the requirements of the shunt.• The resistance of the shunt should remain constant with time.• The temperature of the material should remain the same even though substantial current flows through the circuit.Manganin and Constantan are used for making the shunt of DC and AC ammeter respectively. What is multiplying power of the shunt?

Read the following text and answer the following questions on the basis of the same:Shunt resistance: The ammeter shunt is the device which provides the low resistance path to the flow of current. It is connected in parallel with the ammeter. In some ammeter the shunt is in-built inside the instrument while in others it is externally connected to the circuit. Ammeters are designed for measurement of low current. For measuring high current, the shunt is connected in parallel to the ammeter. The significant portion of the current passes to the shunt because of the low resistance path and little amount of current passes through the ammeter. The shunt is connected in parallel to the ammeter because of which the voltage drops across the meter and shunt remain the same. Thus, the movement of the pointer is not affected by the shunt. Let us consider that the current to be measured is I. The circuit has ammeter and shunt connected parallel to each other. The ammeter is designed for measurement of small current say, Im. The magnitude of the current I passes through the meter is very high, and it will burn the meter. So, for measuring the current I the shunt is required in the circuit. As the shunt connects in parallel with the ammeter, thus the same voltage drops occur between them:IShRSH = ImRm∴ RSH = ImRm/ISHShunt current ISH = I – ImSo, RSH = ImRm/(I – Im)∴ I/Im = 1 + (Rm/RSH)The ratio of the total current to the current required for the movement of the ammeter coil is called the multiplying power of the shunt.∴ The multiplying power = m = I/ImRSH = Rm / (m – 1)The following are the requirements of the shunt.• The resistance of the shunt should remain constant with time.• The temperature of the material should remain the same even though substantial current flows through the circuit.Current through shunt is

Read the following text and answer the following questions on the basis of the same:Shunt resistance: The ammeter shunt is the device which provides the low resistance path to the flow of current. It is connected in parallel with the ammeter. In some ammeter the shunt is in-built inside the instrument while in others it is externally connected to the circuit. Ammeters are designed for measurement of low current. For measuring high current, the shunt is connected in parallel to the ammeter. The significant portion of the current passes to the shunt because of the low resistance path and little amount of current passes through the ammeter. The shunt is connected in parallel to the ammeter because of which the voltage drops across the meter and shunt remain the same. Thus, the movement of the pointer is not affected by the shunt. Let us consider that the current to be measured is I. The circuit has ammeter and shunt connected parallel to each other. The ammeter is designed for measurement of small current say, Im. The magnitude of the current I passes through the meter is very high, and it will burn the meter. So, for measuring the current I the shunt is required in the circuit. As the shunt connects in parallel with the ammeter, thus the same voltage drops occur between them:IShRSH = ImRm∴ RSH = ImRm/ISHShunt current ISH = I – ImSo, RSH = ImRm/(I – Im)∴ I/Im = 1 + (Rm/RSH)The ratio of the total current to the current required for the movement of the ammeter coil is called the multiplying power of the shunt.∴ The multiplying power = m = I/ImRSH = Rm / (m – 1)The following are the requirements of the shunt.• The resistance of the shunt should remain constant with time.• The temperature of the material should remain the same even though substantial current flows through the circuit.Materials used for making shunt of DC and AC ammeter are respectively

Read the following text and answer the following questions on the basis of the same:Shunt resistance: The ammeter shunt is the device which provides the low resistance path to the flow of current. It is connected in parallel with the ammeter. In some ammeter the shunt is in-built inside the instrument while in others it is externally connected to the circuit. Ammeters are designed for measurement of low current. For measuring high current, the shunt is connected in parallel to the ammeter. The significant portion of the current passes to the shunt because of the low resistance path and little amount of current passes through the ammeter. The shunt is connected in parallel to the ammeter because of which the voltage drops across the meter and shunt remain the same. Thus, the movement of the pointer is not affected by the shunt. Let us consider that the current to be measured is I. The circuit has ammeter and shunt connected parallel to each other. The ammeter is designed for measurement of small current say, Im. The magnitude of the current I passes through the meter is very high, and it will burn the meter. So, for measuring the current I the shunt is required in the circuit. As the shunt connects in parallel with the ammeter, thus the same voltage drops occur between them:IShRSH = ImRm∴ RSH = ImRm/ISHShunt current ISH = I – ImSo, RSH = ImRm/(I – Im)∴ I/Im = 1 + (Rm/RSH)The ratio of the total current to the current required for the movement of the ammeter coil is called the multiplying power of the shunt.∴ The multiplying power = m = I/ImRSH = Rm / (m – 1)The following are the requirements of the shunt.• The resistance of the shunt should remain constant with time.• The temperature of the material should remain the same even though substantial current flows through the circuit.How shunt is connected with a ammeter?

Alternating current can not be measured by direct current meters, because–a)Alternating current can not pass through an ammeterb)The average value of current for complete cycle is zeroc)Some amount of alternating current is destroyed in the ammeter.d)NoneCorrect answer is option 'B'. Can you explain this answer?
Question Description
Alternating current can not be measured by direct current meters, because–a)Alternating current can not pass through an ammeterb)The average value of current for complete cycle is zeroc)Some amount of alternating current is destroyed in the ammeter.d)NoneCorrect answer is option 'B'. Can you explain this answer? for Class 12 2024 is part of Class 12 preparation. The Question and answers have been prepared according to the Class 12 exam syllabus. Information about Alternating current can not be measured by direct current meters, because–a)Alternating current can not pass through an ammeterb)The average value of current for complete cycle is zeroc)Some amount of alternating current is destroyed in the ammeter.d)NoneCorrect answer is option 'B'. Can you explain this answer? covers all topics & solutions for Class 12 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Alternating current can not be measured by direct current meters, because–a)Alternating current can not pass through an ammeterb)The average value of current for complete cycle is zeroc)Some amount of alternating current is destroyed in the ammeter.d)NoneCorrect answer is option 'B'. Can you explain this answer?.
Solutions for Alternating current can not be measured by direct current meters, because–a)Alternating current can not pass through an ammeterb)The average value of current for complete cycle is zeroc)Some amount of alternating current is destroyed in the ammeter.d)NoneCorrect answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for Class 12. Download more important topics, notes, lectures and mock test series for Class 12 Exam by signing up for free.
Here you can find the meaning of Alternating current can not be measured by direct current meters, because–a)Alternating current can not pass through an ammeterb)The average value of current for complete cycle is zeroc)Some amount of alternating current is destroyed in the ammeter.d)NoneCorrect answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Alternating current can not be measured by direct current meters, because–a)Alternating current can not pass through an ammeterb)The average value of current for complete cycle is zeroc)Some amount of alternating current is destroyed in the ammeter.d)NoneCorrect answer is option 'B'. Can you explain this answer?, a detailed solution for Alternating current can not be measured by direct current meters, because–a)Alternating current can not pass through an ammeterb)The average value of current for complete cycle is zeroc)Some amount of alternating current is destroyed in the ammeter.d)NoneCorrect answer is option 'B'. Can you explain this answer? has been provided alongside types of Alternating current can not be measured by direct current meters, because–a)Alternating current can not pass through an ammeterb)The average value of current for complete cycle is zeroc)Some amount of alternating current is destroyed in the ammeter.d)NoneCorrect answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Alternating current can not be measured by direct current meters, because–a)Alternating current can not pass through an ammeterb)The average value of current for complete cycle is zeroc)Some amount of alternating current is destroyed in the ammeter.d)NoneCorrect answer is option 'B'. Can you explain this answer? tests, examples and also practice Class 12 tests.
Explore Courses for Class 12 exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev