General solution of pde given below is (y2+ z2+ x2 )p - 2xyq + 2xz = 0...
ANSWER :- a
Solution :- Lagrange auxiliary equations are :-
dx/(y^2 + z^2 - x^2) = -dy/(-2xy) = -dz/(2xz)
Taking the last two members, we get
dy/y = dz/z
Integrating log y = logz + logc1
=y/z = c1
Using ,multipliers x,y,z we get (xdx + ydy + zdz)/-x(x^2 + y^2 + z^2)
(xdx + ydy + zdz)/-x(x^2 + y^2 + z^2) = dx/(-2xz)
2(xdx + ydy + zdz)/(x^2 + y^2 + z^2) = dz/z
Integrating, log(x^2 + y^2 + z^2) = logz + logc2
(x^2 + y^2 + z^2) = zc2
Hence the required solution is f(c1,c2) = 0
= f(y/z, (x^2 + y^2 + z^2)/z) = 0