A determinant is chosen at random from the set of all determinants of ...
Solution:We know that the determinant of a 2x2 matrix is given by:
$$\begin{vmatrix}
a & b\\
c & d
\end{vmatrix} = ad - bc$$
As the determinant can only take values of 0 or 1, the possible matrices are:
$$\begin{vmatrix}
0 & 0\\
0 & 0
\end{vmatrix} = 0$$
$$\begin{vmatrix}
0 & 1\\
0 & 0
\end{vmatrix} = 0$$
$$\begin{vmatrix}
1 & 0\\
0 & 0
\end{vmatrix} = 0$$
$$\begin{vmatrix}
1 & 1\\
0 & 0
\end{vmatrix} = 0$$
$$\begin{vmatrix}
0 & 0\\
1 & 1
\end{vmatrix} = 0$$
$$\begin{vmatrix}
0 & 1\\
1 & 0
\end{vmatrix} = -1$$
$$\begin{vmatrix}
1 & 0\\
0 & 1
\end{vmatrix} = 1$$
$$\begin{vmatrix}
1 & 1\\
1 & 1
\end{vmatrix} = 0$$
Out of the 8 possible matrices, only 2 have a positive determinant. Therefore, the probability of choosing a matrix with a positive determinant is:
$$\frac{2}{8} = \frac{1}{4} = 0.25$$
Therefore, the correct option is (d) 3/16.