JEE Exam  >  JEE Questions  >  Two spherical bodies A (radius 6 cm ) and B(r... Start Learning for Free
Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.
The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.
Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to that
of B?
    Correct answer is '9'. Can you explain this answer?
    Most Upvoted Answer
    Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temp...
     
    Free Test
    Community Answer
    Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temp...
    The Stefan-Boltzmann Law
    The rate of energy radiated by a black body is given by the Stefan-Boltzmann Law, which states that the rate of energy radiated by a black body is proportional to the fourth power of its absolute temperature.

    Calculating the Intensity
    The intensity of the emission spectrum of a black body is inversely proportional to the wavelength at which the maximum intensity occurs. Therefore, the ratio of the maximum intensities of bodies A and B can be calculated as the ratio of the wavelengths at which the maximum intensities occur.

    Given:
    Radius of body A (r1) = 6 cm
    Radius of body B (r2) = 18 cm
    Temperature of body A (T1) = ?
    Temperature of body B (T2) = ?

    Calculating the Temperatures
    To calculate the temperatures of bodies A and B, we can use the Wien's displacement law, which states that the wavelength at which the maximum intensity occurs is inversely proportional to the temperature.

    Using this law, we can write:
    λ1/T1 = λ2/T2
    where λ1 = 500 nm = 500 × 10^-9 m
    and λ2 = 1500 nm = 1500 × 10^-9 m

    Solving for T1:
    T1 = (λ1/λ2) × T2
    = (500 × 10^-9 m)/(1500 × 10^-9 m) × T2
    = 1/3 × T2

    Calculating the Ratio of Energy Radiated
    Now, let's calculate the ratio of the rate of total energy radiated by A to that of B.

    Using the Stefan-Boltzmann Law, we can write:
    Rate of energy radiated by A/Rate of energy radiated by B = (T1^4)/(T2^4)

    Substituting the value of T1 in terms of T2:
    Rate of energy radiated by A/Rate of energy radiated by B = (1/3 × T2)^4/T2^4
    = (1/81) × T2^4/T2^4
    = 1/81

    Therefore, the ratio of the rate of total energy radiated by A to that of B is 1/81, which simplifies to 1/9.

    Hence, the correct answer is 9.
    Explore Courses for JEE exam

    Similar JEE Doubts

    Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to thatof B?Correct answer is '9'. Can you explain this answer?
    Question Description
    Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to thatof B?Correct answer is '9'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to thatof B?Correct answer is '9'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to thatof B?Correct answer is '9'. Can you explain this answer?.
    Solutions for Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to thatof B?Correct answer is '9'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
    Here you can find the meaning of Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to thatof B?Correct answer is '9'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to thatof B?Correct answer is '9'. Can you explain this answer?, a detailed solution for Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to thatof B?Correct answer is '9'. Can you explain this answer? has been provided alongside types of Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to thatof B?Correct answer is '9'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Two spherical bodies A (radius 6 cm ) and B(radius 18 cm ) are at temperature T1 and T2, respectively.The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm.Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to thatof B?Correct answer is '9'. Can you explain this answer? tests, examples and also practice JEE tests.
    Explore Courses for JEE exam

    Top Courses for JEE

    Explore Courses
    Signup for Free!
    Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
    10M+ students study on EduRev