CAT Exam  >  CAT Questions  >  Read the following passage and answer the que... Start Learning for Free
Read the following passage and answer the questions that follows:
Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.
A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.
Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.
The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.
Q. According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?
  • a)
    Proteins bound to the nucleus
  • b)
    Histones
  • c)
    Maternal messenger RNA’s
  • d)
    Cytoplasm
Correct answer is option 'C'. Can you explain this answer?
Verified Answer
Read the following passage and answer the questions that follows:Nearl...
In his study of sea urchins, Gross “found that an unfertilized egg contains substances that function as morphogetic determinants.”
The passage asserts that the “substances that Gross studied are maternal messenger RNA’s,” and we learn that these maternal messenger RNA’s can be found in “ a wide variety of organisms”.
View all questions of this test
Most Upvoted Answer
Read the following passage and answer the questions that follows:Nearl...


Morphogenetic Determinants in Unfertilized Egg Cells

The morphogenetic determinants present in the unfertilized egg cell are maternal messenger RNA's.

Explanation:
- Maternal messenger RNA's are products of certain maternal genes that function as morphogenetic determinants.
- These RNA's are located in the cytoplasm of the egg cell, specifically in the part of the cell's protoplasm that lies outside of the nucleus.
- Maternal messenger RNA's are inactive in the unfertilized egg but become active once the egg is fertilized.
- Upon activation, these RNA's govern the behavior of the genes they interact with, influencing the development and differentiation of cells.
- The uneven distribution of these morphogenetic determinants in the egg leads to qualitative differences in gene activity among the resulting cells after cell division.

Therefore, based on the information provided in the passage, the morphogenetic determinants present in the unfertilized egg cell are maternal messenger RNA's.
Attention CAT Students!
To make sure you are not studying endlessly, EduRev has designed CAT study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in CAT.
Explore Courses for CAT exam

Similar CAT Doubts

Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.It can be inferred from the passage that the morphogenetic determinants present in the early embryo are

Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, when biologists believed that the cells in the early embryo were undetermined, they made which of the following mistakes?

Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.It can be inferred from the passage that which of the following is dependent on the fertilization of an egg?

Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.It can be inferred from the passage that the initial production of histones after an egg is fertilized takes place

Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.The main topic of the passage is

Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?a)Proteins bound to the nucleusb)Histonesc)Maternal messenger RNA’sd)CytoplasmCorrect answer is option 'C'. Can you explain this answer?
Question Description
Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?a)Proteins bound to the nucleusb)Histonesc)Maternal messenger RNA’sd)CytoplasmCorrect answer is option 'C'. Can you explain this answer? for CAT 2024 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?a)Proteins bound to the nucleusb)Histonesc)Maternal messenger RNA’sd)CytoplasmCorrect answer is option 'C'. Can you explain this answer? covers all topics & solutions for CAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?a)Proteins bound to the nucleusb)Histonesc)Maternal messenger RNA’sd)CytoplasmCorrect answer is option 'C'. Can you explain this answer?.
Solutions for Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?a)Proteins bound to the nucleusb)Histonesc)Maternal messenger RNA’sd)CytoplasmCorrect answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?a)Proteins bound to the nucleusb)Histonesc)Maternal messenger RNA’sd)CytoplasmCorrect answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?a)Proteins bound to the nucleusb)Histonesc)Maternal messenger RNA’sd)CytoplasmCorrect answer is option 'C'. Can you explain this answer?, a detailed solution for Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?a)Proteins bound to the nucleusb)Histonesc)Maternal messenger RNA’sd)CytoplasmCorrect answer is option 'C'. Can you explain this answer? has been provided alongside types of Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?a)Proteins bound to the nucleusb)Histonesc)Maternal messenger RNA’sd)CytoplasmCorrect answer is option 'C'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Read the following passage and answer the questions that follows:Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributedhomogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.The substances that Gross studied are maternal messenger RNA’s –products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNA’s direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where sections of DNA wrap around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guides the fate of the cells in which they are located.Q.According to the passage, the morphogenetic determinants present in the unfertilized egg cell are which of the following?a)Proteins bound to the nucleusb)Histonesc)Maternal messenger RNA’sd)CytoplasmCorrect answer is option 'C'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev