JEE Exam  >  JEE Questions  >  If travelling at same speeds,which of the fol... Start Learning for Free
If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton.
Most Upvoted Answer
If travelling at same speeds,which of the following matter waves have ...
Wavelength= h/mvVelocity v is constant...Wavelength is inversely proportional to massHence the heaviest particle has the lowest wavelengthWhich would be the alpha particle
Community Answer
If travelling at same speeds,which of the following matter waves have ...
Alpha particle
By debroglie equation

wavelength is inversely proportional to mass
(if velocity is constant )
Explore Courses for JEE exam

Similar JEE Doubts

The French physicist Louis de-Broglie in 1924 postulated that matter, like radiation, should exhibit a dual behaviour. He proposed the following relationship between the wavelength of a material particle, its linear momentum p and planck constant h.The de Broglie relation implies that the wavelength of a particle should decreases as its velocity increases. It also implies that for a given velocity heavier particles should have shorter wavelength than lighter particles. The waves associated with particles in motion are called matter waves or de Broglie waves.These waves differ from the electromagnetic waves as they,(i) have lower velocities(ii) have no electrical and magnetic fields and(iii) are not emitted by the particle under consideration.The experimental confirmation of the deBroglie relation was obtained when Davisson and Germer, in 1927, observed that a beam of electrons is diffracted by a nickel crystal. As diffraction is a characteristic property of waves, hence the beam of electron behaves as a wave, as proposed by deBroglie.Werner Heisenberg considered the limits of how precisely we can measure properties of an electron or other microscopic particle like electron. He determined that there is a fundamental limit of how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse is also ture. This is summed up in what we now call the Heisenberg uncertainty principle : It is impossible to determine simultaneously and precisely both the momentum and position of a particle. The product of undertainty in the position, x and the uncertainity in the momentum (mv) must be greater than or equal to h/4. i.e.Q. If the uncertainty in velocity position is same, then the uncertainty in momentum will be

Can you explain the answer of this question below:The French physicist Louis de-Broglie in 1924 postulated that matter, like radiation, should exhibit a dual behaviour. He proposed the following relationship between the wavelength of a material particle, its linear momentum p and planck constant h.The de Broglie relation implies that the wavelength of a particle should decreases as its velocity increases. It also implies that for a given velocity heavier particles should have shorter wavelength than lighter particles. The waves associated with particles in motion are called matter waves or de Broglie waves.These waves differ from the electromagnetic waves as they,(i) have lower velocities(ii) have no electrical and magnetic fields and(iii) are not emitted by the particle under consideration.The experimental confirmation of the deBroglie relation was obtained when Davisson and Germer, in 1927, observed that a beam of electrons is diffracted by a nickel crystal. As diffraction is a characteristic property of waves, hence the beam of electron behaves as a wave, as proposed by deBroglie.Werner Heisenberg considered the limits of how precisely we can measure properties of an electron or other microscopic particle like electron. He determined that there is a fundamental limit of how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse is also ture. This is summed up in what we now call the Heisenberg uncertainty principle : It is impossible to determine simultaneously and precisely both the momentum and position of a particle. The product of undertainty in the position, x and the uncertainity in the momentum (mv) must be greater than or equal to h/4. i.e.Q.The correct order of wavelength of Hydrogen (1H1), Deuterium (1H2) and Tritium (1H3) moving with same kinetic energy is :A:H D TB:H = D = TC:H D TD:H D TThe answer is a.

The French physicist Louis de-Broglie in 1924 postulated that matter, like radiation, should exhibit a dual behaviour. He proposed the following relationship between the wavelength of a material particle, its linear momentum p and planck constant h.The de Broglie relation implies that the wavelength of a particle should decreases as its velocity increases. It also implies that for a given velocity heavier particles should have shorter wavelength than lighter particles. The waves associated with particles in motion are called matter waves or de Broglie waves.These waves differ from the electromagnetic waves as they,(i) have lower velocities(ii) have no electrical and magnetic fields and(iii) are not emitted by the particle under consideration.The experimental confirmation of the deBroglie relation was obtained when Davisson and Germer, in 1927, observed that a beam of electrons is diffracted by a nickel crystal. As diffraction is a characteristic property of waves, hence the beam of electron behaves as a wave, as proposed by deBroglie.Werner Heisenberg considered the limits of how precisely we can measure properties of an electron or other microscopic particle like electron. He determined that there is a fundamental limit of how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse is also ture. This is summed up in what we now call the Heisenberg uncertainty principle : It is impossible to determine simultaneously and precisely both the momentum and position of a particle. The product of undertainty in the position, x and the uncertainity in the momentum (mv) must be greater than or equal to h/4. i.e.Q. The transition, so that the de - Broglie wavelength of electron becomes 3 times of its initial value in He+ ion will be

If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton.
Question Description
If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton. for JEE 2025 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton. covers all topics & solutions for JEE 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton..
Solutions for If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton. in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton. defined & explained in the simplest way possible. Besides giving the explanation of If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton., a detailed solution for If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton. has been provided alongside types of If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton. theory, EduRev gives you an ample number of questions to practice If travelling at same speeds,which of the following matter waves have the shortest wavelength? A.Electron B.Alpha particle C.Neutron D.Proton. tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev