CAT Exam  >  CAT Questions  >   DIRECTIONS for questions: The passage given ... Start Learning for Free
DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.
The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.
But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.
So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.
With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.
Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.
Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).
Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.
For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.
But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.
Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?
Your answer is correct
  • a)
    A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.
  • b)
    A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.
  • c)
    Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.
  • d)
    Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.
Correct answer is option 'B'. Can you explain this answer?
Most Upvoted Answer
DIRECTIONS for questions: The passage given below is accompanied by a...
Understanding the Objectives of the Institute for the Sustainable Development of Space
The question asks which option is least likely to align with the objectives of the Institute for the Sustainable Development of Space as indicated in the passage.
Analysis of the Options
- Option A: "A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris."
- This aligns with the passage's emphasis on finding solutions for space debris, making it a likely objective.
- Option B: "A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris."
- While collaboration is important, the passage stresses finding long-term solutions rather than merely creating a platform for discussion. Hence, this option is less aligned with the core objective of actionable solutions.
- Option C: "Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit."
- This reflects concerns about overcrowding and aligns with the passage's focus on sustainable use of space, making it likely.
- Option D: "Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris."
- This is directly supported by the passage’s warning about the dangers of debris and the need for sustainable exploration.
Conclusion
Option B is the least likely objective because it focuses on creating a platform for discussion rather than the proactive, solution-oriented approach emphasized in the passage. The Institute aims to generate concrete solutions rather than merely gather opinions.
Free Test
Community Answer
DIRECTIONS for questions: The passage given below is accompanied by a...
So far no one has any idea how to deal with the scientific and engineering challenges - let alone the political, legal, and business ones - involved in sustainably managing orbital debris and mining celestial objects. That's why Aaron Boiey, a planetary physicist at the University of British Columbia., and at least six other space scientists, policy experts, and legal scholars from Canada, the U.S., the UK, and China are putting together the world's first Institute for the Sustainable Development of Space - essentially a space-focused think tank. With their focus on sustainable development Boiey and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Option A: From the underlined portions above, no one has an idea how to deal with the challenge and that’s why Aaron’s team was formed. Hence, one of the goals of the Institute for the Sustainable Development of Space was to focus on sustainable development and also protect space while treating it as a global common. Also, this para follows the para which discusses the proliferation of man-made satellites increasing the space debris. Hence, A is not the answer.
Option B: The underlined portions show that the team consisted of policy experts, legal scholars and space scientists. Hence, one of the missions of the Institute was to provide a common platform for experts from various fields to discuss various angles of the space debris problem. Hence, B is not the answer.
Option C: This line indicates a problem that wasn’t directly mentioned in the scope of this passage. The problem discussed in the passage is that of too many man-made satellites making it a daunting task to keep track of the orbiting debris and space. In other words, it’s not the number of satellites but the management of the debris that is the problem discussed. The number is therefore, least likely to be the objective. Hence, Option C is the answer.
Option D: From the line today's space activities don’t compromise future ones’, we can understand that the Institute wants to secure the future of space exploration as well, which is in danger (jeopardy) if the debris is left unmanaged. This can further be understood from the line If one day a collision begets another and another, like in the 2013 movie Gravity, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else’. Hence, D is not the answer.
Explore Courses for CAT exam

Similar CAT Doubts

DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller on e).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is the main theme of the passage?Your answer is correct

DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller on e).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is the likely cause behind the author’s warning but their combined extractions of resources or pollution result in overfished or threatened species’?

DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller on e).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. From the evidence in the first para, which assumption is the author making in the line, ‘For a document conceived before the moon-landing, it’s remarkably forward-looking’?

DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller on e).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. The author mentions the example of San Francisco-based Planet Labs to demonstrate which of the following points?

DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller on e).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following, if proven false, will negate the author’s conclusion in the line, ‘It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say’?1. No solution to permanently clean up the space debris will be implemented in the next decade or two.2. Currently, we don’t have any solution for cleaning up the space debris.3. Commercialization of low earth orbit could contribute to a lot of space debris.4. Debris not in the low Earth orbit doesn’t pose much of a challenge.

DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?Your answer is correcta)A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.b)A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.c)Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.d)Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.Correct answer is option 'B'. Can you explain this answer?
Question Description
DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?Your answer is correcta)A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.b)A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.c)Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.d)Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.Correct answer is option 'B'. Can you explain this answer? for CAT 2025 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?Your answer is correcta)A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.b)A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.c)Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.d)Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.Correct answer is option 'B'. Can you explain this answer? covers all topics & solutions for CAT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?Your answer is correcta)A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.b)A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.c)Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.d)Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.Correct answer is option 'B'. Can you explain this answer?.
Solutions for DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?Your answer is correcta)A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.b)A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.c)Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.d)Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.Correct answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?Your answer is correcta)A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.b)A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.c)Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.d)Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.Correct answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?Your answer is correcta)A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.b)A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.c)Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.d)Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.Correct answer is option 'B'. Can you explain this answer?, a detailed solution for DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?Your answer is correcta)A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.b)A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.c)Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.d)Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.Correct answer is option 'B'. Can you explain this answer? has been provided alongside types of DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?Your answer is correcta)A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.b)A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.c)Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.d)Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.Correct answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice DIRECTIONS for questions: The passage given below is accompanied by a set of six questions. Choose the best answer to each question.The Outer Space Treaty – written in 1967 and signed by all the major world powers – is the closest thing we have to a constitution for space. For a document conceived before the moon landing, it’s remarkably forward-looking: it declares “celestial bodies” like the moon and asteroids off-limits for private development and requires countries authorize and continually supervise companies’ activities in space. It also says that space exploration should be carried out for the benefit of all peoples.But even with that impressive scope of vision, the treaty’s authors could never have imagined where we’d be now. Currently there are 1,738 man-made satellites in orbit around our planet. As they become more affordable to build and launch, they’ll no doubt proliferate and vie for valuable real estate there with space stations, space tourists, space colonists, space miners, military spacecraft, and thousands of derelict satellites and other immobile debris.So far no one has any idea how to deal with the scientific and engineering challenges – let alone the political, legal, and business ones – involved in sustainably managing orbital debris and mining celestial objects. That’s why Aaron Boley and at least six other space scientists, policy experts, and legal scholars are putting together the world’s first Institute for the Sustainable Development of Space – essentially a space-focused think tank. The experts aim to find long-term solutions so that future generations of space explorers can continue where today’s leaves off.With their focus on sustainable development, Boley and his team come across as a band of space environmentalists who want to treat space like a global common, something that can be used but also must be protected, so that today’s space activities don’t compromise future ones. Earthly analogues include conflicts over forests or oceans, where people or even nations on their own might think they’re having a minimal impact – but their combined extractions of resources or pollution result in overfished or threatened species. Sustainably-fished species can survive indefinitely, while some practices, like fish trawling or proposed seafloor mining, could cause more lasting damage.Space activities that threaten to fill up low Earth orbit could be similarly scrutinized. Boley and his colleagues believe that orbital debris is the most pressing and formidable problem facing space development today. It will only worsen as we witness the commercialization of low Earth orbit in the next decade or two, they say. If one day a collision begets another and another, it could produce an impenetrable ring of debris that effectively prevents future space activities for everyone else. Until unproven technologies for vacuuming, netting, or harpooning debris become viable, temporary solutions are needed.Currently each satellite has to have its own debris mitigation plan, which usually means falling back to Earth within 25 years or boosting up higher into a “graveyard orbit” (where there’s still a risk of collision, albeit a much smaller one).Constant monitoring of so many objects seems a daunting task, with swarms of small satellites now more affordable to send up into space than their larger, traditional counterparts.For example, at any one time, San Francisco-based Planet Labs, a private Earth imaging company, has some 200 orbiting satellites between the size of a shoe box and a washing machine. They generally fly at altitudes of 500 kilometres, which is below the densest regions and makes it easier for the satellites’ orbits to naturally decay over a few years’ time, upon which they fall and burn up in re-entry.But what if not everyone acts in everyone’s best interest? No one has taken responsibility for a plethora of unidentified and unmaneuverable debris already polluting the atmosphere. There’s no overarching authority. What we can do is get together around a table.Q. Which of the following is least likely to be an objective of the Institute for the Sustainable Development of Space, as can be understood from the passage?Your answer is correcta)A space-focused think tank is needed to discuss the potential solutions to the ever-increasing menace of space debris.b)A common platform is needed to bring together several parties which may have an opinion on how we deal with the problem of space debris.c)Too many man-made satellites shouldn’t be allowed to crowd the low Earth orbit.d)Space exploration should be a viable option in the future and not be jeopardized because of a ring of unattended debris.Correct answer is option 'B'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev