Question Description
A bar of circular cross-section is subjected to alternating tensile forces varying from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Using Goodman straight line as basis for design, the diameter of circular bar isa) 63 mmb) 95.4 mmc) 59.44 mmd) 53.144 mmCorrect answer is option 'C'. Can you explain this answer? for Mechanical Engineering 2024 is part of Mechanical Engineering preparation. The Question and answers have been prepared
according to
the Mechanical Engineering exam syllabus. Information about A bar of circular cross-section is subjected to alternating tensile forces varying from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Using Goodman straight line as basis for design, the diameter of circular bar isa) 63 mmb) 95.4 mmc) 59.44 mmd) 53.144 mmCorrect answer is option 'C'. Can you explain this answer? covers all topics & solutions for Mechanical Engineering 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for A bar of circular cross-section is subjected to alternating tensile forces varying from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Using Goodman straight line as basis for design, the diameter of circular bar isa) 63 mmb) 95.4 mmc) 59.44 mmd) 53.144 mmCorrect answer is option 'C'. Can you explain this answer?.
Solutions for A bar of circular cross-section is subjected to alternating tensile forces varying from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Using Goodman straight line as basis for design, the diameter of circular bar isa) 63 mmb) 95.4 mmc) 59.44 mmd) 53.144 mmCorrect answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for Mechanical Engineering.
Download more important topics, notes, lectures and mock test series for Mechanical Engineering Exam by signing up for free.
Here you can find the meaning of A bar of circular cross-section is subjected to alternating tensile forces varying from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Using Goodman straight line as basis for design, the diameter of circular bar isa) 63 mmb) 95.4 mmc) 59.44 mmd) 53.144 mmCorrect answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
A bar of circular cross-section is subjected to alternating tensile forces varying from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Using Goodman straight line as basis for design, the diameter of circular bar isa) 63 mmb) 95.4 mmc) 59.44 mmd) 53.144 mmCorrect answer is option 'C'. Can you explain this answer?, a detailed solution for A bar of circular cross-section is subjected to alternating tensile forces varying from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Using Goodman straight line as basis for design, the diameter of circular bar isa) 63 mmb) 95.4 mmc) 59.44 mmd) 53.144 mmCorrect answer is option 'C'. Can you explain this answer? has been provided alongside types of A bar of circular cross-section is subjected to alternating tensile forces varying from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Using Goodman straight line as basis for design, the diameter of circular bar isa) 63 mmb) 95.4 mmc) 59.44 mmd) 53.144 mmCorrect answer is option 'C'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice A bar of circular cross-section is subjected to alternating tensile forces varying from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Using Goodman straight line as basis for design, the diameter of circular bar isa) 63 mmb) 95.4 mmc) 59.44 mmd) 53.144 mmCorrect answer is option 'C'. Can you explain this answer? tests, examples and also practice Mechanical Engineering tests.