CAT Exam  >  CAT Questions  >  DIRECTIONS: Read the passage and answer the q... Start Learning for Free
DIRECTIONS: Read the passage and answer the questions based on it.
Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .
The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them. 
The key to their trick is the difference between two different types of heat transfer: radiation and convection.
The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.
Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.
(2019)
Q. All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:
  • a)
    The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheit
  • b)
    The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheit
  • c)
    The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectively
  • d)
    The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiation
Correct answer is option 'B'. Can you explain this answer?
Most Upvoted Answer
DIRECTIONS: Read the passage and answer the questions based on it.Scie...
According to the question, all the options (considering they are true) negate the findings of the study but there is one option that does not negate the findings. Therefore, we can go to each of the options one by one to find out whether they contradict the points made in the passage or not.
The passage maintains that the outer air temperature is warmer than the plumage temperature. In contrast if the outer temperature gets colder than the plumage temperature, the point made in the passage which is the findings of the study would be negated and this position is taken by option (a) because the heat transfer from colder air outside to the warmer plumage will not take place. Therefore, we can reject option (a). Now let us come to choice (a). In choice (c), the plumage is warmer than the outer air of Antarctic, while the plumage has to be colder. Therefore, it negates the finding of the study in the passage. So this choice has to be rejected.
Choice (d) is about penguins’ plumage made of a material that did not allow any heat transfer through convection or radiation. But in the passage thermal convection helps the penguins gain some heat. Therefore, this option negates the findings of the study or the contention of the author of the passage.
However option (b) does not negate the finding of the study. The passage claims that the feet is the warmest part of the body and if you make it a little warmer, it is still the warmest part of the body. Option (b) correctly describes the average temperature of the feet of penguins in the month of June 2008. This does not negate the finding of the study. Hence, it is the correct answer.
Free Test
Community Answer
DIRECTIONS: Read the passage and answer the questions based on it.Scie...
According to the question, all the options (considering they are true) negate the findings of the study but there is one option that does not negate the findings. Therefore, we can go to each of the options one by one to find out whether they contradict the points made in the passage or not.
The passage maintains that the outer air temperature is warmer than the plumage temperature. In contrast if the outer temperature gets colder than the plumage temperature, the point made in the passage which is the findings of the study would be negated and this position is taken by option (a) because the heat transfer from colder air outside to the warmer plumage will not take place. Therefore, we can reject option (a). Now let us come to choice (a). In choice (c), the plumage is warmer than the outer air of Antarctic, while the plumage has to be colder. Therefore, it negates the finding of the study in the passage. So this choice has to be rejected.
Choice (d) is about penguins’ plumage made of a material that did not allow any heat transfer through convection or radiation. But in the passage thermal convection helps the penguins gain some heat. Therefore, this option negates the findings of the study or the contention of the author of the passage.
However option (b) does not negate the finding of the study. The passage claims that the feet is the warmest part of the body and if you make it a little warmer, it is still the warmest part of the body. Option (b) correctly describes the average temperature of the feet of penguins in the month of June 2008. This does not negate the finding of the study. Hence, it is the correct answer.
Explore Courses for CAT exam

Similar CAT Doubts

Instructions:The passage given below is followed by a question. Choose the most appropriate answer. Scientists recently discovered that Emperor Penguins — one of Antarctica’s most celebrated species — employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps them toasty. The researchers analyzed thermographic images taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were -1.84, -7.24 and -9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body - and discovered that by keeping their outer surface below the air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them. The key to their trick is the difference between two different types of heat transfer: radiation and convection. The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumag e) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The Penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature. Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial. Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT

Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were -1.84, -7.24 and -9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body - and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them. The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumag e) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.Q. All of the following, if true, would negate the findings of the study reported in the passage EXCEPT

DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumag e) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.Which of the following best explains the purpose of the word “paradoxically” as used by the author?

DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumag e) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.Which of the following can be responsible for Emperor Penguins losing body heat?

DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumag e) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.In the last sentence of paragraph 3, “slightly warmer air” and “at a slightly colder temperature” refer to ______ AND ______ respectively

Top Courses for CAT

DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:a)The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheitb)The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheitc)The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectivelyd)The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiationCorrect answer is option 'B'. Can you explain this answer?
Question Description
DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:a)The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheitb)The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheitc)The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectivelyd)The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiationCorrect answer is option 'B'. Can you explain this answer? for CAT 2025 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:a)The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheitb)The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheitc)The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectivelyd)The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiationCorrect answer is option 'B'. Can you explain this answer? covers all topics & solutions for CAT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:a)The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheitb)The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheitc)The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectivelyd)The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiationCorrect answer is option 'B'. Can you explain this answer?.
Solutions for DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:a)The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheitb)The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheitc)The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectivelyd)The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiationCorrect answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:a)The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheitb)The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheitc)The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectivelyd)The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiationCorrect answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:a)The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheitb)The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheitc)The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectivelyd)The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiationCorrect answer is option 'B'. Can you explain this answer?, a detailed solution for DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:a)The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheitb)The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheitc)The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectivelyd)The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiationCorrect answer is option 'B'. Can you explain this answer? has been provided alongside types of DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:a)The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheitb)The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheitc)The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectivelyd)The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiationCorrect answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice DIRECTIONS: Read the passage and answer the questions based on it.Scientists recently discovered that Emperor Penguins—one of Antarctica’s most celebrated species—employ a particularly unusual technique for surviving the daily chill. As detailed in an article published today in the journal Biology Letters, the birds minimize heat loss by keeping the outer surface of their plumage below the temperature of the surrounding air. At the same time, the penguins’ thick plumage insulates their body and keeps it toasty. . . .The researchers analyzed thermographic images . . . taken over roughly a month during June 2008. During that period, the average air temperature was 0.32 degrees Fahrenheit. At the same time, the majority of the plumage covering the penguins’ bodies was even colder: the surface of their warmest body part, their feet, was an average 1.76 degrees Fahrenheit, but the plumage on their heads, chests and backs were –1.84, –7.24 and – 9.76 degrees Fahrenheit respectively. Overall, nearly the entire outer surface of the penguins’ bodies was below freezing at all times, except for their eyes and beaks. The scientists also used a computer simulation to determine how much heat was lost or gained from each part of the body—and discovered that by keeping their outer surface below air temperature, the birds might paradoxically be able to draw very slight amounts of heat from the air around them.The key to their trick is the difference between two different types of heat transfer: radiation and convection.The penguins do lose internal body heat to the surrounding air through thermal radiation, just as our bodies do on a cold day. Because their bodies (but not surface plumage) are warmer than the surrounding air, heat gradually radiates outward over time, moving from a warmer material to a colder one. To maintain body temperature while losing heat, penguins, like all warm-blooded animals, rely on the metabolism of food. The penguins, though, have an additional strategy. Since their outer plumage is even colder than the air, the simulation showed that they might gain back a little of this heat through thermal convection—the transfer of heat via the movement of a fluid (in this case, the air). As the cold Antarctic air cycles around their bodies, slightly warmer air comes into contact with the plumage and donates minute amounts of heat back to the penguins, then cycles away at a slightly colder temperature.Most of this heat, the researchers note, probably doesn’t make it all the way through the plumage and back to the penguins’ bodies, but it could make a slight difference. At the very least, the method by which a penguin’s plumage wicks heat from the bitterly cold air that surrounds it helps to cancel out some of the heat that’s radiating from its interior. And given the Emperors’ unusually demanding breeding cycle, every bit of warmth counts. . . . Since [penguins trek as far as 75 miles to the coast to breed and male penguins] don’t eat anything during [the incubation period of 64 days], conserving calories by giving up as little heat as possible is absolutely crucial.(2019)Q.All of the following, if true, would negate the findings of the study reported in the passage EXCEPT:a)The average air temperature recorded during the month of June 2008 in the area of study were –10 degrees Fahrenheitb)The average temperature of the feet of penguins in the month of June 2008 were found to be 2.76 degrees Fahrenheitc)The temperature of the plumage on the penguins’ heads, chests and backs were found to be 1.84, 7.24 and 9.76 degrees Fahrenheit respectivelyd)The penguins’ plumage were made of a material that did not allow any heat transfer through convection or radiationCorrect answer is option 'B'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev