Two circles, each of radius 4 cm, touch externally. Each of these two ...
Let the centers of the two smaller circles be $A$ and $B$, and the center of the larger circle be $C$. Let the tangency points of the two smaller circles with the larger circle be $D$ and $E$. Let the point of tangency of the common tangent with circle $A$ be $F$ and the point of tangency of the common tangent with circle $B$ be $G$. Let the point of tangency of the common tangent with the larger circle be $H$. We can draw the following diagram:
[asy] draw((-4,0)--(4,0),linewidth(1)); draw((-2,0)--(-2,2*sqrt(3)),linewidth(1)); draw((2,0)--(2,2*sqrt(3)),linewidth(1)); draw((-2,2*sqrt(3))--(2,2*sqrt(3)),linewidth(1)); draw((-2,0)--(0,4),linewidth(1)); draw((2,0)--(0,4),linewidth(1)); draw((0,4)--(0,2*sqrt(3)),linewidth(1)); label("$A$",(-2,0),SW); label("$B$",(2,0),SE); label("$C$",(0,2*sqrt(3)),N); label("$D$",(0,4),N); label("$E$",(-2,2*sqrt(3)),W); label("$F$",(-1,2),W); label("$G$",(1,2),E); label("$H$",(0,4),N); dot((-2,0)); dot((2,0)); dot((0,2*sqrt(3))); dot((0,4)); dot((-2,2*sqrt(3))); dot((-1,2)); dot((1,2)); [/asy]
Since $\overline{AF}$ is tangent to circle $A$, $\angle AFE=\angle AEF=90^\circ$. Similarly, $\angle BEG=\angle BGE=90^\circ$. Since $\overline{AF}$ and $\overline{BG}$ are parallel, $\angle EAF=\angle EBG$. Thus, $\triangle AEF\sim\triangle BEG$. By AAA, $\triangle AEF\sim\triangle BEG$. Since $\triangle AEF\sim\triangle CDH$ and $\triangle BEG\sim\triangle CDH$, we have
$$\frac{EF}{GH}=\frac{AF}{BG}=\frac{AE}{BE}=\frac{CD}{CD} = 1.$$Since $EF=GH$, we have $EF=GH=4$. Let the radius of the larger circle be $r$. By the Pythagorean Theorem on right $\triangle ACF$, we have
$$r^2=AC^2=AF^2+CF^2=(4+r)^2+4^2=2r^2+16r+32.$$Solving for $r$, we see that $r=\boxed{016}$.