In a triangle ABC, cosec A (sin B cos C + cos B sin C) equals:a)c/ab)a...
cosec A (sin B cos C + cos B sin C)= cosec A × sin(B+C)
= cosec A × sin(180 – A)
= cosec A × sin A
= cosec A × 1/cosec A
= 1
View all questions of this test
In a triangle ABC, cosec A (sin B cos C + cos B sin C) equals:a)c/ab)a...
In triangle ABC, we are given the expression cosec A (sin B cos C + cos B sin C) and we need to simplify it.
First, let's simplify the expression inside the brackets:
sin B cos C + cos B sin C = sin(B+C)
Using the trigonometric identity sin(A+B) = sin A cos B + cos A sin B, we can rewrite sin(B+C) as sin B cos C + cos B sin C.
Therefore, the expression inside the brackets simplifies to sin(B+C).
Now, let's substitute this simplified expression back into the original expression:
cosec A (sin B cos C + cos B sin C) = cosec A sin(B+C)
Next, let's use the trigonometric identity sin(A+B) = sin A cos B + cos A sin B to rewrite sin(B+C) as sin B cos C + cos B sin C:
cosec A (sin B cos C + cos B sin C) = cosec A sin B cos C + cosec A cos B sin C
Now, since cosec A is equal to 1/sin A, we can rewrite the expression as:
cosec A (sin B cos C + cos B sin C) = (1/sin A) sin B cos C + (1/sin A) cos B sin C
Using the distributive property, we can simplify further:
cosec A (sin B cos C + cos B sin C) = (sin B cos C)/sin A + (cos B sin C)/sin A
Finally, using the trigonometric identity cosec A = 1/sin A, we can rewrite the expression as:
cosec A (sin B cos C + cos B sin C) = (sin B cos C)/sin A + (cos B sin C)/sin A = sin B cos C cosec A + cos B sin C cosec A = 1 + 1 = 2
Therefore, the expression cosec A (sin B cos C + cos B sin C) simplifies to 2.
Since the options provided do not include 2 as a possible answer, the correct answer must be none of these (d).