Question Description
Let s and t be two vertices in a undirected graph G + (V, E) having distinct positive edge weights. Let [X, Y] be a partition of V such that s ∈ X and t ∈ Y. Consider the edge e having the minimum weight amongst all those edges that have one vertex in X and one vertex in Y The edge e must definitely belong to:a)the minimum weighted spanning tree of Gb)the weighted shortest path from s to tc)each path from s to td)the weighted longest path from s to tCorrect answer is option 'A'. Can you explain this answer? for Computer Science Engineering (CSE) 2024 is part of Computer Science Engineering (CSE) preparation. The Question and answers have been prepared
according to
the Computer Science Engineering (CSE) exam syllabus. Information about Let s and t be two vertices in a undirected graph G + (V, E) having distinct positive edge weights. Let [X, Y] be a partition of V such that s ∈ X and t ∈ Y. Consider the edge e having the minimum weight amongst all those edges that have one vertex in X and one vertex in Y The edge e must definitely belong to:a)the minimum weighted spanning tree of Gb)the weighted shortest path from s to tc)each path from s to td)the weighted longest path from s to tCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for Computer Science Engineering (CSE) 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for Let s and t be two vertices in a undirected graph G + (V, E) having distinct positive edge weights. Let [X, Y] be a partition of V such that s ∈ X and t ∈ Y. Consider the edge e having the minimum weight amongst all those edges that have one vertex in X and one vertex in Y The edge e must definitely belong to:a)the minimum weighted spanning tree of Gb)the weighted shortest path from s to tc)each path from s to td)the weighted longest path from s to tCorrect answer is option 'A'. Can you explain this answer?.
Solutions for Let s and t be two vertices in a undirected graph G + (V, E) having distinct positive edge weights. Let [X, Y] be a partition of V such that s ∈ X and t ∈ Y. Consider the edge e having the minimum weight amongst all those edges that have one vertex in X and one vertex in Y The edge e must definitely belong to:a)the minimum weighted spanning tree of Gb)the weighted shortest path from s to tc)each path from s to td)the weighted longest path from s to tCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for Computer Science Engineering (CSE).
Download more important topics, notes, lectures and mock test series for Computer Science Engineering (CSE) Exam by signing up for free.
Here you can find the meaning of Let s and t be two vertices in a undirected graph G + (V, E) having distinct positive edge weights. Let [X, Y] be a partition of V such that s ∈ X and t ∈ Y. Consider the edge e having the minimum weight amongst all those edges that have one vertex in X and one vertex in Y The edge e must definitely belong to:a)the minimum weighted spanning tree of Gb)the weighted shortest path from s to tc)each path from s to td)the weighted longest path from s to tCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
Let s and t be two vertices in a undirected graph G + (V, E) having distinct positive edge weights. Let [X, Y] be a partition of V such that s ∈ X and t ∈ Y. Consider the edge e having the minimum weight amongst all those edges that have one vertex in X and one vertex in Y The edge e must definitely belong to:a)the minimum weighted spanning tree of Gb)the weighted shortest path from s to tc)each path from s to td)the weighted longest path from s to tCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for Let s and t be two vertices in a undirected graph G + (V, E) having distinct positive edge weights. Let [X, Y] be a partition of V such that s ∈ X and t ∈ Y. Consider the edge e having the minimum weight amongst all those edges that have one vertex in X and one vertex in Y The edge e must definitely belong to:a)the minimum weighted spanning tree of Gb)the weighted shortest path from s to tc)each path from s to td)the weighted longest path from s to tCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of Let s and t be two vertices in a undirected graph G + (V, E) having distinct positive edge weights. Let [X, Y] be a partition of V such that s ∈ X and t ∈ Y. Consider the edge e having the minimum weight amongst all those edges that have one vertex in X and one vertex in Y The edge e must definitely belong to:a)the minimum weighted spanning tree of Gb)the weighted shortest path from s to tc)each path from s to td)the weighted longest path from s to tCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice Let s and t be two vertices in a undirected graph G + (V, E) having distinct positive edge weights. Let [X, Y] be a partition of V such that s ∈ X and t ∈ Y. Consider the edge e having the minimum weight amongst all those edges that have one vertex in X and one vertex in Y The edge e must definitely belong to:a)the minimum weighted spanning tree of Gb)the weighted shortest path from s to tc)each path from s to td)the weighted longest path from s to tCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice Computer Science Engineering (CSE) tests.