Question Description
When water is filled carefully in a glass, one can fill it to a height h above the rim of the glass due to the surface tension of water. To calculate h just before water starts flowing, model the shape of the water above the rim as a disc of thickness h having semicircular edges, as shown schematically in the figure. When the pressure of water at the bottom of this disc exceeds what can be withstood due to the surface tension, the water surface breaks near the rim and water starts flowing from there. If the density of water, its surface tension and the acceleration due to gravity are 103kg m−3, 0.07 Nm−1 and 10 ms−2, respectively, the value of h (in mm) is _________.-Correct answer is '3.74'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared
according to
the JEE exam syllabus. Information about When water is filled carefully in a glass, one can fill it to a height h above the rim of the glass due to the surface tension of water. To calculate h just before water starts flowing, model the shape of the water above the rim as a disc of thickness h having semicircular edges, as shown schematically in the figure. When the pressure of water at the bottom of this disc exceeds what can be withstood due to the surface tension, the water surface breaks near the rim and water starts flowing from there. If the density of water, its surface tension and the acceleration due to gravity are 103kg m−3, 0.07 Nm−1 and 10 ms−2, respectively, the value of h (in mm) is _________.-Correct answer is '3.74'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for When water is filled carefully in a glass, one can fill it to a height h above the rim of the glass due to the surface tension of water. To calculate h just before water starts flowing, model the shape of the water above the rim as a disc of thickness h having semicircular edges, as shown schematically in the figure. When the pressure of water at the bottom of this disc exceeds what can be withstood due to the surface tension, the water surface breaks near the rim and water starts flowing from there. If the density of water, its surface tension and the acceleration due to gravity are 103kg m−3, 0.07 Nm−1 and 10 ms−2, respectively, the value of h (in mm) is _________.-Correct answer is '3.74'. Can you explain this answer?.
Solutions for When water is filled carefully in a glass, one can fill it to a height h above the rim of the glass due to the surface tension of water. To calculate h just before water starts flowing, model the shape of the water above the rim as a disc of thickness h having semicircular edges, as shown schematically in the figure. When the pressure of water at the bottom of this disc exceeds what can be withstood due to the surface tension, the water surface breaks near the rim and water starts flowing from there. If the density of water, its surface tension and the acceleration due to gravity are 103kg m−3, 0.07 Nm−1 and 10 ms−2, respectively, the value of h (in mm) is _________.-Correct answer is '3.74'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE.
Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of When water is filled carefully in a glass, one can fill it to a height h above the rim of the glass due to the surface tension of water. To calculate h just before water starts flowing, model the shape of the water above the rim as a disc of thickness h having semicircular edges, as shown schematically in the figure. When the pressure of water at the bottom of this disc exceeds what can be withstood due to the surface tension, the water surface breaks near the rim and water starts flowing from there. If the density of water, its surface tension and the acceleration due to gravity are 103kg m−3, 0.07 Nm−1 and 10 ms−2, respectively, the value of h (in mm) is _________.-Correct answer is '3.74'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
When water is filled carefully in a glass, one can fill it to a height h above the rim of the glass due to the surface tension of water. To calculate h just before water starts flowing, model the shape of the water above the rim as a disc of thickness h having semicircular edges, as shown schematically in the figure. When the pressure of water at the bottom of this disc exceeds what can be withstood due to the surface tension, the water surface breaks near the rim and water starts flowing from there. If the density of water, its surface tension and the acceleration due to gravity are 103kg m−3, 0.07 Nm−1 and 10 ms−2, respectively, the value of h (in mm) is _________.-Correct answer is '3.74'. Can you explain this answer?, a detailed solution for When water is filled carefully in a glass, one can fill it to a height h above the rim of the glass due to the surface tension of water. To calculate h just before water starts flowing, model the shape of the water above the rim as a disc of thickness h having semicircular edges, as shown schematically in the figure. When the pressure of water at the bottom of this disc exceeds what can be withstood due to the surface tension, the water surface breaks near the rim and water starts flowing from there. If the density of water, its surface tension and the acceleration due to gravity are 103kg m−3, 0.07 Nm−1 and 10 ms−2, respectively, the value of h (in mm) is _________.-Correct answer is '3.74'. Can you explain this answer? has been provided alongside types of When water is filled carefully in a glass, one can fill it to a height h above the rim of the glass due to the surface tension of water. To calculate h just before water starts flowing, model the shape of the water above the rim as a disc of thickness h having semicircular edges, as shown schematically in the figure. When the pressure of water at the bottom of this disc exceeds what can be withstood due to the surface tension, the water surface breaks near the rim and water starts flowing from there. If the density of water, its surface tension and the acceleration due to gravity are 103kg m−3, 0.07 Nm−1 and 10 ms−2, respectively, the value of h (in mm) is _________.-Correct answer is '3.74'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice When water is filled carefully in a glass, one can fill it to a height h above the rim of the glass due to the surface tension of water. To calculate h just before water starts flowing, model the shape of the water above the rim as a disc of thickness h having semicircular edges, as shown schematically in the figure. When the pressure of water at the bottom of this disc exceeds what can be withstood due to the surface tension, the water surface breaks near the rim and water starts flowing from there. If the density of water, its surface tension and the acceleration due to gravity are 103kg m−3, 0.07 Nm−1 and 10 ms−2, respectively, the value of h (in mm) is _________.-Correct answer is '3.74'. Can you explain this answer? tests, examples and also practice JEE tests.