CAT Exam  >  CAT Questions  >   Directions: Analyze the following passage an... Start Learning for Free
Directions: Analyze the following passage and provide appreciate answers for the questions that follow.
Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'
(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.
Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:
  • a)
    Probability of an event can always be checked with experience.
  • b)
    Probability of an event can only be gauged historically.
  • c)
    Probability is mathematical while experience is real.
  • d)
    Probability statements can become difficult to disprove without experience.
  • e)
    Probability is futuristic.
Correct answer is option 'D'. Can you explain this answer?
Most Upvoted Answer
Directions: Analyze the following passage and provide appreciate answ...
Explanation:

Implications of the statement:
- The statement implies that there is a need to clarify the relationship between probability and experience.
- It suggests that while probability plays a crucial role in empirical science, there is still a lack of clarity on how it relates to actual experiences.

Interpretation of the statement:
- The statement highlights the challenge of reconciling theoretical probability with real-world experiences.
- It points out that even though probabilities are used extensively in scientific research, they can sometimes be difficult to verify or falsify based on actual experiences.

Significance of the statement:
- By acknowledging the need for clarification on the relations between probability and experience, the passage emphasizes the importance of establishing a clear understanding of how probabilistic statements align with empirical observations.
- This recognition of the gap in understanding between probability theory and practical experiences underscores the complexity of applying probabilistic reasoning in scientific investigations.

Conclusion:
- In summary, the statement reflects the ongoing quest to bridge the gap between theoretical probabilities and experiential realities, highlighting the challenges and implications of this endeavor in the realm of modern physics.
Free Test
Community Answer
Directions: Analyze the following passage and provide appreciate answ...
The answer can be found in lines ‘. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification.... Only option 4 can be inferred from the given paragraph, all other options are factually incorrect and not supported by the passage.
Attention CAT Students!
To make sure you are not studying endlessly, EduRev has designed CAT study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in CAT.
Explore Courses for CAT exam

Similar CAT Doubts

Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. Author has talked about the two tasks in the above passage. Choose the best option from the following statements relevant to the tasks.

Directions: Analyse the following passage and provide appropriate answers.Popper claimed, scientific beliefs are universal in character, and have to be so if they are to serve us in explanation and prediction. For the universality of a scientific belief implies that, no matter how many instances we have found positive, there will always be an indefinite number of unexamined instances which may or may not also be positive. We have no good reason for supposing that any of these unexamined instances will be positive, or will be negative, so we must refrain from drawing any conclusions. On the other hand, a single negative instance is sufficient to prove that the belief is false, for such an instance is logically incompatible with the universal truth of the belief. Provided, therefore, that the instance is accepted as negative we must conclude that the scientific belief is false. In short, we can sometimes deduce that a universal scientific belief is false but we can never induce that a universal scientific belief is true.It is sometimes argued that this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be. Thus, there is no inconsistency in holding that a universal scientific belief is false despite any number of positive instances; and there is no inconsistency either in holding that a universal scientific belief is true despite the evidence of a negative instance. For the belief that an instance is negative is itself a scientific belief and may be falsified by experimental evidence which we accept and which is inconsistent with it. When, for example, we draw a right-angled triangle on the surface of a sphere using parts of three great circles for its sides, and discover that for this triangle Pythagoras' Theorem does not hold, we may decide that this apparently negative instance is not really negative because it is not a genuine instance at all. Triangles drawn on the surfaces of spheres are not the sort of triangles which fall within the scope of Pythagoras' Theorem. Falsification, that is to say, is no more capable of yielding conclusive rejections of scientific belief than verification is of yielding conclusive acceptances of scientific beliefs. The asymmetry between falsification and verification, therefore, has less logical significance than Popper supposed.We should, though, resist this reasoning. Falsifications may not be conclusive, for the acceptances on which rejections are based are always provisional acceptances. But, nevertheless, it remains the case that, in falsification, if we accept falsifying claims then, to remain consistent, we must reject falsified claims. On the other hand, although verifications are also not conclusive, our acceptance or rejection of verifying instances has no implications concerning the acceptance or rejection of verified claims. Falsifying claims sometimes give us a good reason for rejecting a scientific belief, namely when the claims are accepted. But verifying claims, even when accepted, give us no good and appropriate reason for accepting any scientific belief, because any such reason would have to be inductive to be appropriate and there are no good inductive reasons.Q. According to Popper, the statement “Scientific beliefs are universal in character” implies that

Directions: Analyse the following passage and provide appropriate answers.Popper claimed, scientific beliefs are universal in character, and have to be so if they are to serve us in explanation and prediction. For the universality of a scientific belief implies that, no matter how many instances we have found positive, there will always be an indefinite number of unexamined instances which may or may not also be positive. We have no good reason for supposing that any of these unexamined instances will be positive, or will be negative, so we must refrain from drawing any conclusions. On the other hand, a single negative instance is sufficient to prove that the belief is false, for such an instance is logically incompatible with the universal truth of the belief. Provided, therefore, that the instance is accepted as negative we must conclude that the scientific belief is false. In short, we can sometimes deduce that a universal scientific belief is false but we can never induce that a universal scientific belief is true.It is sometimes argued that this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be. Thus, there is no inconsistency in holding that a universal scientific belief is false despite any number of positive instances; and there is no inconsistency either in holding that a universal scientific belief is true despite the evidence of a negative instance. For the belief that an instance is negative is itself a scientific belief and may be falsified by experimental evidence which we accept and which is inconsistent with it. When, for example, we draw a right-angled triangle on the surface of a sphere using parts of three great circles for its sides, and discover that for this triangle Pythagoras' Theorem does not hold, we may decide that this apparently negative instance is not really negative because it is not a genuine instance at all. Triangles drawn on the surfaces of spheres are not the sort of triangles which fall within the scope of Pythagoras' Theorem. Falsification, that is to say, is no more capable of yielding conclusive rejections of scientific belief than verification is of yielding conclusive acceptances of scientific beliefs. The asymmetry between falsification and verification, therefore, has less logical significance than Popper supposed.We should, though, resist this reasoning. Falsifications may not be conclusive, for the acceptances on which rejections are based are always provisional acceptances. But, nevertheless, it remains the case that, in falsification, if we accept falsifying claims then, to remain consistent, we must reject falsified claims. On the other hand, although verifications are also not conclusive, our acceptance or rejection of verifying instances has no implications concerning the acceptance or rejection of verified claims. Falsifying claims sometimes give us a good reason for rejecting a scientific belief, namely when the claims are accepted. But verifying claims, even when accepted, give us no good and appropriate reason for accepting any scientific belief, because any such reason would have to be inductive to be appropriate and there are no good inductive reasons.Q. With which of the following statements, would the author agree most?

Directions for Questions Analyse the following passage and provide appropriate answers. Popper claimed, scientific beliefs are universal in character, and have to be so if they are to serve us in explanation and prediction. For the universality of a scientific belief implies that, no matter how many instances we have found positive, there will always be an indefinite number of unexamined instances which may or may not also be positive. We have no good reason for supposing that any of these unexamined instances will be positive, or will be negative, so we must refrain from drawing any conclusions. On the other hand, a single negative instance is sufficient to prove that the belief is false, for such an instance is logically incompatible with the universal truth of the belief. Provided, therefore, that the instance is accepted as negative we must conclude that the scientific belief is false. In short, we can sometimes deduce that a universal scientific belief is false but we can never induce that a universal scientific belief is true. It is sometimes argued that this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be. Thus, there is no inconsistency in holding that a universal scientific belief is false despite any number of positive instances; and there is no inconsistency either in holding that a universal scientific belief is true despite the evidence of a negative instance. For the belief that an instance is negative is itself a scientific belief and may be falsified by experimental evidence which we accept and which is inconsistent with it. When, for example, we draw a right-angled triangle on the surface of a sphere using parts of three great circles for its sides, and discover that for this triangle Pythagoras' Theorem does not hold, we may decide that this apparently negative instance is not really negative because it is not a genuine instance at all. Triangles drawn on the surfaces of spheres are not the sort of triangles which fall within the scope of Pythagoras' Theorem. Falsification, that is to say, is no more capable of yielding conclusive rejections of scientific belief than verification is of yielding conclusive acceptances of scientific beliefs. The asymmetry between falsification and verification, therefore, has less logical significance than Popper supposed. We should, though, resist this reasoning. Falsifications may not be conclusive, for the acceptances on which rejections are based are always provisional acceptances. But, nevertheless, it remains the case that, in falsification, if we accept falsifying claims then, to remain consistent, we must reject falsified claims. On the other hand, although verifications are also not conclusive, our acceptance or rejection of verifying instances has no implications concerning the acceptance or rejection of verified claims. Falsifying claims sometimes give us a good reason for rejecting a scientific belief, namely when the claims are accepted. But verifying claims, even when accepted, give us no good and appropriate reason for accepting any scientific belief, because any such reason would have to be inductive to be appropriate and there are no good inductive reasons. The statement, this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be, implies that

Directions: Analyse the following passage and provide appropriate answers.Popper claimed, scientific beliefs are universal in character, and have to be so if they are to serve us in explanation and prediction. For the universality of a scientific belief implies that, no matter how many instances we have found positive, there will always be an indefinite number of unexamined instances which may or may not also be positive. We have no good reason for supposing that any of these unexamined instances will be positive, or will be negative, so we must refrain from drawing any conclusions. On the other hand, a single negative instance is sufficient to prove that the belief is false, for such an instance is logically incompatible with the universal truth of the belief. Provided, therefore, that the instance is accepted as negative we must conclude that the scientific belief is false. In short, we can sometimes deduce that a universal scientific belief is false but we can never induce that a universal scientific belief is true.It is sometimes argued that this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be. Thus, there is no inconsistency in holding that a universal scientific belief is false despite any number of positive instances; and there is no inconsistency either in holding that a universal scientific belief is true despite the evidence of a negative instance. For the belief that an instance is negative is itself a scientific belief and may be falsified by experimental evidence which we accept and which is inconsistent with it. When, for example, we draw a right-angled triangle on the surface of a sphere using parts of three great circles for its sides, and discover that for this triangle Pythagoras' Theorem does not hold, we may decide that this apparently negative instance is not really negative because it is not a genuine instance at all. Triangles drawn on the surfaces of spheres are not the sort of triangles which fall within the scope of Pythagoras' Theorem. Falsification, that is to say, is no more capable of yielding conclusive rejections of scientific belief than verification is of yielding conclusive acceptances of scientific beliefs. The asymmetry between falsification and verification, therefore, has less logical significance than Popper supposed.We should, though, resist this reasoning. Falsifications may not be conclusive, for the acceptances on which rejections are based are always provisional acceptances. But, nevertheless, it remains the case that, in falsification, if we accept falsifying claims then, to remain consistent, we must reject falsified claims. On the other hand, although verifications are also not conclusive, our acceptance or rejection of verifying instances has no implications concerning the acceptance or rejection of verified claims. Falsifying claims sometimes give us a good reason for rejecting a scientific belief, namely when the claims are accepted. But verifying claims, even when accepted, give us no good and appropriate reason for accepting any scientific belief, because any such reason would have to be inductive to be appropriate and there are no good inductive reasons.Q. The statement, “this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be”, implies that

Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:a)Probability of an event can always be checked with experience.b)Probability of an event can only be gauged historically.c)Probability is mathematical while experience is real.d)Probability statements can become difficult to disprove without experience.e)Probability is futuristic.Correct answer is option 'D'. Can you explain this answer?
Question Description
Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:a)Probability of an event can always be checked with experience.b)Probability of an event can only be gauged historically.c)Probability is mathematical while experience is real.d)Probability statements can become difficult to disprove without experience.e)Probability is futuristic.Correct answer is option 'D'. Can you explain this answer? for CAT 2024 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:a)Probability of an event can always be checked with experience.b)Probability of an event can only be gauged historically.c)Probability is mathematical while experience is real.d)Probability statements can become difficult to disprove without experience.e)Probability is futuristic.Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for CAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:a)Probability of an event can always be checked with experience.b)Probability of an event can only be gauged historically.c)Probability is mathematical while experience is real.d)Probability statements can become difficult to disprove without experience.e)Probability is futuristic.Correct answer is option 'D'. Can you explain this answer?.
Solutions for Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:a)Probability of an event can always be checked with experience.b)Probability of an event can only be gauged historically.c)Probability is mathematical while experience is real.d)Probability statements can become difficult to disprove without experience.e)Probability is futuristic.Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:a)Probability of an event can always be checked with experience.b)Probability of an event can only be gauged historically.c)Probability is mathematical while experience is real.d)Probability statements can become difficult to disprove without experience.e)Probability is futuristic.Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:a)Probability of an event can always be checked with experience.b)Probability of an event can only be gauged historically.c)Probability is mathematical while experience is real.d)Probability statements can become difficult to disprove without experience.e)Probability is futuristic.Correct answer is option 'D'. Can you explain this answer?, a detailed solution for Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:a)Probability of an event can always be checked with experience.b)Probability of an event can only be gauged historically.c)Probability is mathematical while experience is real.d)Probability statements can become difficult to disprove without experience.e)Probability is futuristic.Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:a)Probability of an event can always be checked with experience.b)Probability of an event can only be gauged historically.c)Probability is mathematical while experience is real.d)Probability statements can become difficult to disprove without experience.e)Probability is futuristic.Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Directions: Analyze the following passage and provide appreciate answers for the questions that follow.Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the 'axiom of convergence'(or 'limit axiom') and with a somewhat weakened 'axiom of randomness' The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by 'probability'.Q. The statement, "The relations between probability and experience are still in need of clarification" implies that:a)Probability of an event can always be checked with experience.b)Probability of an event can only be gauged historically.c)Probability is mathematical while experience is real.d)Probability statements can become difficult to disprove without experience.e)Probability is futuristic.Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev