CAT Exam  >  CAT Questions  >   Answer the following question based on the i... Start Learning for Free
Answer the following question based on the information given below.
Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.
While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.
Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.
A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.
Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.
Q. What is the concept of entropy described in the passage?
  • a)
    Entropy characterizes our uncertainty about the information in an incoming message.
  • b)
    Entropy characterizes the capacity of a communication channel.
  • c)
    Entropy applies the Boolean logic to electrical circuits to enable communication.
  • d)
    Entropy determines the least possibility of uncertainty in a communication channel.
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
Answer the following question based on the information given below.Cl...
The passage says that Shannon defined the capacity of a communication channel while option 2 defines entropy in terms of he capacity of the channel which gives an incoherent meaning. So, eliminate option 2. Similarly, we eliminate option 3 which is remotely related to the concept of entropy.
Option 4 gives a vague definition of entropy. So, eliminate option 4.
Hence, the correct option is (a).
Free Test
Community Answer
Answer the following question based on the information given below.Cl...
Understanding the Concept of Entropy
The concept of entropy, as described in the passage, is a fundamental aspect of Claude Shannon's information theory. It highlights the relationship between uncertainty and information transmission in communication systems.
Key Points on Entropy:
- Uncertainty and Information:
- Entropy characterizes our uncertainty about the information in an incoming message.
- The more uncertainty present in a communication channel, the more information can be transmitted. This means that if a message is highly uncertain, it holds the potential for conveying a significant amount of information.
- Impact on Communication Channels:
- Shannon's insight suggests that the optimal use of a communication channel involves maximizing the uncertainty or entropy.
- When a channel has high entropy, it enables the transmission of more diverse and complex information.
- Relevance to Cryptography:
- Shannon's work on entropy also extends to cryptographic systems. The idea is that a system with greater entropy is more secure, as it becomes harder to decode the information without the correct key.
Conclusion:
In essence, Shannon's concept of entropy provides a mathematical framework for understanding how uncertainty in communication channels can be leveraged to enhance information transmission and security. Thus, option 'A' accurately encapsulates this principle by emphasizing the relationship between entropy and uncertainty in incoming messages.
Explore Courses for CAT exam

Similar CAT Doubts

Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannons varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?

Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What can be said about Shannon's thought as expressed in 1949 paper Communication Theory of Secrecy Systems?

Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. In the above passage, Shannon is being credited with

Group QuestionAnswer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannons varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. In the above passage, Shannon is being credited with

Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. Shannon basically brought a

Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?a)Entropy characterizes our uncertainty about the information in an incoming message.b)Entropy characterizes the capacity of a communication channel.c)Entropy applies the Boolean logic to electrical circuits to enable communication.d)Entropy determines the least possibility of uncertainty in a communication channel.Correct answer is option 'A'. Can you explain this answer?
Question Description
Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?a)Entropy characterizes our uncertainty about the information in an incoming message.b)Entropy characterizes the capacity of a communication channel.c)Entropy applies the Boolean logic to electrical circuits to enable communication.d)Entropy determines the least possibility of uncertainty in a communication channel.Correct answer is option 'A'. Can you explain this answer? for CAT 2025 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?a)Entropy characterizes our uncertainty about the information in an incoming message.b)Entropy characterizes the capacity of a communication channel.c)Entropy applies the Boolean logic to electrical circuits to enable communication.d)Entropy determines the least possibility of uncertainty in a communication channel.Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for CAT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?a)Entropy characterizes our uncertainty about the information in an incoming message.b)Entropy characterizes the capacity of a communication channel.c)Entropy applies the Boolean logic to electrical circuits to enable communication.d)Entropy determines the least possibility of uncertainty in a communication channel.Correct answer is option 'A'. Can you explain this answer?.
Solutions for Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?a)Entropy characterizes our uncertainty about the information in an incoming message.b)Entropy characterizes the capacity of a communication channel.c)Entropy applies the Boolean logic to electrical circuits to enable communication.d)Entropy determines the least possibility of uncertainty in a communication channel.Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?a)Entropy characterizes our uncertainty about the information in an incoming message.b)Entropy characterizes the capacity of a communication channel.c)Entropy applies the Boolean logic to electrical circuits to enable communication.d)Entropy determines the least possibility of uncertainty in a communication channel.Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?a)Entropy characterizes our uncertainty about the information in an incoming message.b)Entropy characterizes the capacity of a communication channel.c)Entropy applies the Boolean logic to electrical circuits to enable communication.d)Entropy determines the least possibility of uncertainty in a communication channel.Correct answer is option 'A'. Can you explain this answer?, a detailed solution for Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?a)Entropy characterizes our uncertainty about the information in an incoming message.b)Entropy characterizes the capacity of a communication channel.c)Entropy applies the Boolean logic to electrical circuits to enable communication.d)Entropy determines the least possibility of uncertainty in a communication channel.Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?a)Entropy characterizes our uncertainty about the information in an incoming message.b)Entropy characterizes the capacity of a communication channel.c)Entropy applies the Boolean logic to electrical circuits to enable communication.d)Entropy determines the least possibility of uncertainty in a communication channel.Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?a)Entropy characterizes our uncertainty about the information in an incoming message.b)Entropy characterizes the capacity of a communication channel.c)Entropy applies the Boolean logic to electrical circuits to enable communication.d)Entropy determines the least possibility of uncertainty in a communication channel.Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev