SAT Exam  >  SAT Questions  >  The following passage and corresponding figur... Start Learning for Free
The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.
The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear. 
Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.
In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.
Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.
What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.
These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.
The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”
The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.
Q. Based on the passage, which of the following is true about VWFA?
  • a)
    The input into this area overpowers nearby areas.
  • b)
    It is not present in illiterate children.
  • c)
    Its growth is associated with reading speed in all individuals.
  • d)
    It grows more quickly in children than it does in adults.
Correct answer is option 'D'. Can you explain this answer?
Most Upvoted Answer
The following passage and corresponding figure are from Emilie Reas. &...
The answer to this question can be found in the in the last paragraph: "However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months"
Explore Courses for SAT exam

Similar SAT Doubts

Question based on the following passages.Passage 1 is adapted from Talleyrand et al., Report on Public Instruction. Originally published in 1791. Passage 2 is adapted from Mary Wollstonecraft, A Vindication of the Rights of Woman. Originally published in 1792. Talleyrand was a French diplomat; the Report was a plan for national education. Wollstonecraft, a British novelist and political writer, wrote Vindication in response to Talleyrand.Passage 1That half the human race is excluded by the otherhalf from any participation in government; that theyare native by birth but foreign by law in the very landwhere they were born; and that they are(5) property-owners yet have no direct influence orrepresentation: are all political phenomenaapparently impossible to explain on abstractprinciple. But on another level of ideas, the questionchanges and may be easily resolved. The purpose of(10)all these institutions must be the happiness of thegreatest number. Everything that leads us fartherfrom this purpose is in error; everything that bringsus closer is truth. If the exclusion from publicemployments decreed against women leads to a(15)greater sum of mutual happiness for the two sexes,then this becomes a law that all Societies have beencompelled to acknowledge and sanction.Any other ambition would be a reversal of ourprimary destinies; and it will never be in women’s(20)interest to change the assignment they have received.It seems to us incontestable that our commonhappiness, above all that of women, requires thatthey never aspire to the exercise of political rightsand functions. Here we must seek their interests in(25)the wishes of nature. Is it not apparent, that theirdelicate constitutions, their peaceful inclinations, andthe many duties of motherhood, set them apart fromstrenuous habits and onerous duties, and summonthem to gentle occupations and the cares of the(30)home? And is it not evident that the great conservingprinciple of Societies, which makes the division ofpowers a source of harmony, has been expressed andrevealed by nature itself, when it divided thefunctions of the two sexes in so obviously distinct a(35)manner? This is sufficient; we need not invokeprinciples that are inapplicable to the question. Let usnot make rivals of life’s companions. You must, youtruly must allow the persistence of a union that nointerest, no rivalry, can possibly undo. Understand(40)that the good of all demands this of you.Passage 2Contending for the rights of woman, my mainargument is built on this simple principle, that if shebe not prepared by education to become thecompanion of man, she will stop the progress of(45)knowledge and virtue; for truth must be common toall, or it will be inefficacious with respect to itsinfluence on general practice. And how can womanbe expected to co-operate unless she know why sheought to be virtuous? unless freedom strengthen her(50)reason till she comprehend her duty, and see in whatmanner it is connected with her real good? Ifchildren are to be educated to understand the trueprinciple of patriotism, their mother must be apatriot; and the love of mankind, from which an(55)orderly train of virtues spring, can only be producedby considering the moral and civil interest ofmankind; but the education and situation of woman,at present, shuts her out from such investigations....Consider, sir, dispassionately, these(60)observations—for a glimpse of this truth seemed toopen before you when you observed, “that to see onehalf of the human race excluded by the other from allparticipation of government, was a politicalphenomenon that, according to abstract principles, it(65)was impossible to explain.” If so, on what does yourconstitution rest? If the abstract rights of man willbear discussion and explanation, those of woman, bya parity of reasoning, will not shrink from the sametest: though a different opinion prevails in this(70)country, built on the very arguments which you useto justify the oppression of woman—prescription.Consider—I address you as a legislator—whether, when men contend for their freedom, andto be allowed to judge for themselves respecting their(75)own happiness, it be not inconsistent and unjust tosubjugate women, even though you firmly believethat you are acting in the manner best calculated topromote their happiness? Who made man theexclusive judge, if woman partake with him the gift(80)of reason?In this style, argue tyrants of everydenomination, from the weak king to the weakfather of a family; they are all eager to crush reason;yet always assert that they usurp its throne only to be(85)useful. Do you not act a similar part, when you forceall women, by denying them civil and political rights,to remain immured in their families groping inthe dark?Q.Which choice provides the best evidence for the answer to the previous question?

Directions: Each passage below is accompanied by a number of questions. For some questions, you will consider how the passage might be revised to improve the expression of ideas. For other questions, you will consider how the passage might be edited to correct errors in sentence structure, usage, or punctuation. A passage or a question may be accompanied by one or more graphics (such as a table or graph) that you will consider as you make revising and editing decisions. Some questions will direct you to an underlined portion of a passage. Other questions will direct you to a location in a passage or ask you to think about the passage as a whole. After reading each passage, choose the answer to each question that most effectively improves the quality of writing in the passage or that makes the passage conform to the conventions of standard written English. Many questions include a “NO CHANGE” option. Choose that option if you think the best choice is to leave the relevant portion of the passage as it is.Question based on the following passage.More than One Way to Dress a CatFrom Michelangelo’s David to Vincent van Gogh’s series of self-portraits to Grant Wood’s iconic image of a farming couple in American (1)Gothic. These works by human artists have favored representations of members of their own species to those of other species. Indeed, when we think about animals depicted in well-known works of art, the image of dogs playing poker—popularized in a series of paintings by American artist C. M. (2) Coolidge, may be the first and only one that comes to mind. Yet some of the earliest known works of art, including paintings and drawings tens of thousands of years old found on cave walls in Spain and France, (3) portrays animals. Nor has artistic homage to our fellow creatures entirely died out in the millennia since, (4) despite the many years that have passed between then and now.1.The State Hermitage Museum in St. Petersburg, one of Russia’s greatest art museums, has long had a productive partnership with a much loved animal: the cat.2.For centuries, cats have guarded this famous museum, ridding it of mice, rats, and other rodents that could damage the art, not to mention (5) scared off visitors.3.Peter the Great introduced the first cat to the Hermitage in the early eighteenth century.4.Later Catherine the Great declared the cats to be official guardians of the galleries.5.Continuing the tradition, Peter’s daughter Elizaveta introduced the best and strongest cats in Russia to the Hermitage.6.Today, the museum holds a yearly festival honoring these faithful workers. 6 These cats are so cherished by the museum that officials recently (7) decreed original paintings to be made of six of them. In each, a cat is depicted upright in a humanlike pose and clothed in imperial-era Russian attire. The person chosen for this (8) task, digital artist, Eldar Zakirov painted the cats in the style traditionally used by portrait artists, in so doing (9)presenting the cats as noble individuals worthy of respect. One portrait, The Hermitage Court Chamber Herald Cat, includes anaristocratic tilt of feline ears as well as a stately sweep of tail emerging from the stiff scarlet and gold of royal court dress. The wise, thoughtful green eyes of the subject of The Hermitage Court Outrunner Cat mimic those of a trusted royal advisor. 10 Some may find it peculiar to observe cats portrayed in formal court poses, but these felines, by (11) mastering the art of killing mice and rats, are benefactors of the museum as important as any human.Q. (1)

The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.Q. Based on the passage, which of the following is true about VWFA?a)The input into this area overpowers nearby areas.b)It is not present in illiterate children.c)Its growth is associated with reading speed in all individuals.d)It grows more quickly in children than it does in adults.Correct answer is option 'D'. Can you explain this answer?
Question Description
The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.Q. Based on the passage, which of the following is true about VWFA?a)The input into this area overpowers nearby areas.b)It is not present in illiterate children.c)Its growth is associated with reading speed in all individuals.d)It grows more quickly in children than it does in adults.Correct answer is option 'D'. Can you explain this answer? for SAT 2024 is part of SAT preparation. The Question and answers have been prepared according to the SAT exam syllabus. Information about The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.Q. Based on the passage, which of the following is true about VWFA?a)The input into this area overpowers nearby areas.b)It is not present in illiterate children.c)Its growth is associated with reading speed in all individuals.d)It grows more quickly in children than it does in adults.Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for SAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.Q. Based on the passage, which of the following is true about VWFA?a)The input into this area overpowers nearby areas.b)It is not present in illiterate children.c)Its growth is associated with reading speed in all individuals.d)It grows more quickly in children than it does in adults.Correct answer is option 'D'. Can you explain this answer?.
Solutions for The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.Q. Based on the passage, which of the following is true about VWFA?a)The input into this area overpowers nearby areas.b)It is not present in illiterate children.c)Its growth is associated with reading speed in all individuals.d)It grows more quickly in children than it does in adults.Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for SAT. Download more important topics, notes, lectures and mock test series for SAT Exam by signing up for free.
Here you can find the meaning of The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.Q. Based on the passage, which of the following is true about VWFA?a)The input into this area overpowers nearby areas.b)It is not present in illiterate children.c)Its growth is associated with reading speed in all individuals.d)It grows more quickly in children than it does in adults.Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.Q. Based on the passage, which of the following is true about VWFA?a)The input into this area overpowers nearby areas.b)It is not present in illiterate children.c)Its growth is associated with reading speed in all individuals.d)It grows more quickly in children than it does in adults.Correct answer is option 'D'. Can you explain this answer?, a detailed solution for The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.Q. Based on the passage, which of the following is true about VWFA?a)The input into this area overpowers nearby areas.b)It is not present in illiterate children.c)Its growth is associated with reading speed in all individuals.d)It grows more quickly in children than it does in adults.Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.Q. Based on the passage, which of the following is true about VWFA?a)The input into this area overpowers nearby areas.b)It is not present in illiterate children.c)Its growth is associated with reading speed in all individuals.d)It grows more quickly in children than it does in adults.Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.Q. Based on the passage, which of the following is true about VWFA?a)The input into this area overpowers nearby areas.b)It is not present in illiterate children.c)Its growth is associated with reading speed in all individuals.d)It grows more quickly in children than it does in adults.Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice SAT tests.
Explore Courses for SAT exam

Top Courses for SAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev