ACT Exam  >  ACT Questions  >  Sound waves travel through a medium by mechan... Start Learning for Free
Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so.  
Study 1
A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.
Study 2
The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.
According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?
  • a)
    60∘C
  • b)
    100C
  • c)
    0C`
  • d)
    80C
Correct answer is option 'D'. Can you explain this answer?
Most Upvoted Answer
Sound waves travel through a medium by mechanically disturbing the par...
Velocities of sound in water can be found in the third column of Table 2.  The highest velocity listed in the table is 1,555 m/s. Temperatures are listed in the first column; this sound velocity occurs in water that is 80°C.
Explore Courses for ACT exam

Similar ACT Doubts

Directions:Read the passages and choose the best answer to each question.PassageStudents debate 4 hypotheses regarding the origin of the asteroid belt located between Mars and Jupiter, based on the following observations.ObservationsObservation 1- If all of the asteroids were gathered together into one object, the diameter of the object formed would be less than half the diameter of Earth’s Moon.Observation 2- The total mass of the asteroid belt is only 4% that of the Moon. One asteroid alone, Ceres, contains 1/3 of the total mass of the asteroid belt.Observation 3- Asteroids are largely composed of silicate, with some deposits of iron and nickel, a composition proportionately similar to that of the terrestrial planets.Some asteroids also contain carbon and other elements.Observation 4- There is a strong orbital resonance (overlapping gravity) with Jupiter in the region of the asteroid belt, which keeps the asteroids in an orbit around the sun.Observation 5- In reality, asteroids within the belt are very far apart, not clustered together.Observation 6- Within the early solar system, the velocity of collisions within the region of the asteroid belt was much higher than it is currently.Hypothesis 1All of the material that makes up the asteroids in the asteroid belt is similar to that of the material that makes up the terrestrial planets. The velocity of collisions in the early solar system was at one time high enough to break apart planets as they formed. Since one asteroid, Ceres, has 1/3 the total mass of the belt, the asteroids are most likely the result of a partially formed planet that broke apart and became trapped in an orbit between Mars and Jupiter.Hypothesis 2 The material that composes the asteroids is similar to that of the terrestrial planets. The belt likely formed during the same time that the planets were forming, and due to the strong orbital resonance with the gas giant Jupiter and high velocity collisions, chunks of the material were pulled away from various planets and trapped within orbit. This also explains the varying composition of the asteroids throughout the belt.Hypothesis 3 The asteroids could not once have been a planet, because there is not enough material within the entire belt to form a planet-sized object. The lack of material, shown by the total diameter and mass of the objects within the belt, is proof that the asteroids are no more than large particles left over from the formation of the terrestrial planets from a single cloud of material.Hypothesis 4 The asteroids most likely came from somewhere outside the solar system. As they passed through space at varying intervals, they were trapped by the large orbital resonance of Jupiter and formed a “belt.” The vast distances between most of the asteroids in the belt are evidence that they did not come from a singular source, but arrived at different points in the belt’s development.Q. With which of the following statements would supporters of all four hypotheses agree?

There are two types of forces that occur with all substances on Earth. Intramolecular forces occur between atoms in a molecule, while intermolecular forces occur between neighboring molecules. Intermolecular forces can be dipole-dipole forces, hydrogen bonding, or London dispersion forces.Professor 1:Water molecules represent an example of hydrogen bonding due to the attraction between the hydrogen atoms and the oxygen atoms in the molecule. This strong dipole-dipole occurs due to lone pairs present on such atoms as Fluorine, Nitrogen, and Oxygen, which are able to pair more closely to the hydrogen atom in another nearby molecule. Water can be present in a solid, liquid, or gaseous state on Earth depending on the competition between the strength of intermolecular bonds and the thermal energy of the system. In 1873, a Dutch scientist, Van der Waals derived an equation that included both the force of attraction between the particles of a gas and the volume of the particles at high pressures. This equation led to a better fit for experimental data than the Ideal Gas Law.Professor 2:Water is the only substance on Earth that we routinely encounter as a solid, liquid, and gas. At low temperatures, the water molecules lock into a rigid structure, but as the temperature increases, the average kinetic energy of the water molecules increases and the molecules are able to move more creating its other natural states of matter. The higher the temperature, the more likely water is to be a gas. Water is proof of the kinetic theory, which assumes that there is no force of attraction between the particles of the gas state. The best fit for experimental data involving water in a gaseous form is found by using the Ideal Gas Law, since there is no interaction between the gaseous molecules. This law accounts for all of the forces that occur with gases on Earth.Q. Which of the following statements would professor 2 agree with?

Top Courses for ACT

Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so. Study 1A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.Study 2The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?a)60Cb)100Cc)0C`d)80CCorrect answer is option 'D'. Can you explain this answer?
Question Description
Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so. Study 1A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.Study 2The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?a)60Cb)100Cc)0C`d)80CCorrect answer is option 'D'. Can you explain this answer? for ACT 2025 is part of ACT preparation. The Question and answers have been prepared according to the ACT exam syllabus. Information about Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so. Study 1A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.Study 2The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?a)60Cb)100Cc)0C`d)80CCorrect answer is option 'D'. Can you explain this answer? covers all topics & solutions for ACT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so. Study 1A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.Study 2The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?a)60Cb)100Cc)0C`d)80CCorrect answer is option 'D'. Can you explain this answer?.
Solutions for Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so. Study 1A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.Study 2The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?a)60Cb)100Cc)0C`d)80CCorrect answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for ACT. Download more important topics, notes, lectures and mock test series for ACT Exam by signing up for free.
Here you can find the meaning of Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so. Study 1A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.Study 2The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?a)60Cb)100Cc)0C`d)80CCorrect answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so. Study 1A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.Study 2The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?a)60Cb)100Cc)0C`d)80CCorrect answer is option 'D'. Can you explain this answer?, a detailed solution for Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so. Study 1A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.Study 2The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?a)60Cb)100Cc)0C`d)80CCorrect answer is option 'D'. Can you explain this answer? has been provided alongside types of Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so. Study 1A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.Study 2The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?a)60Cb)100Cc)0C`d)80CCorrect answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Sound waves travel through a medium by mechanically disturbing the particles of that medium. As particles in the medium are displaced by the sound wave, they in turn act upon neighboring particles. In this fashion, the wave travels through the medium through a parallel series of disturbed particles. Like in other forms of motion, the rate at which the sound wave travels can be measured by dividing the distance over which the wave travels by the time required for it to do so. Study 1A group of students hypothesizes that the velocity of sound is dependent upon the density of the medium through which it passes. They propose that with more matter in a given space, each particle needs to travel a shorter distance to disturb the adjacent particles. Using two microphones and a high speed recording device, the students measured the delay from the first microphone to the second. They chose a variety of media, shown in Table 1, and measured the velocity of sound through each using their two-microphone setup. The results are found in Table 1.Study 2The students wanted to test their hypothesis by using the same medium at different densities. To do this, they heated pure water to various temperatures and repeated the procedure described in Study 1. Their results can be found in Table 2.According to Study 2, water at which of the following temperatures yields the greatest velocity of sound?a)60Cb)100Cc)0C`d)80CCorrect answer is option 'D'. Can you explain this answer? tests, examples and also practice ACT tests.
Explore Courses for ACT exam

Top Courses for ACT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev