ACT Exam  >  ACT Questions  >  What is the smallest possible integer for whi... Start Learning for Free
What is the smallest possible integer for which 15% of that integer is greater than 2.3?
  • a)
    3
  • b)
    12
  • c)
    15
  • d)
    16
  • e)
    18
Correct answer is option 'D'. Can you explain this answer?
Most Upvoted Answer
What is the smallest possible integer for which 15% of that integer is...
Smallest Integer Calculation
To find the smallest possible integer for which 15% of that integer is greater than 2.3, we need to set up an inequality.

Let x be the integer:
0.15x > 2.3

Solve for x:
x > 2.3 / 0.15
x > 15.33

Smallest Integer:
The smallest integer greater than 15.33 is 16.
Therefore, the smallest possible integer for which 15% of that integer is greater than 2.3 is 16, which corresponds to option D.
Free Test
Community Answer
What is the smallest possible integer for which 15% of that integer is...
The correct answer is d. To solve this problem, make x the smallest possible integer for which 15% of x is greater than 2.3. Then, set up the following inequality: 0.15x > 2.3. Divide both sides by 0.15 to get x > 15.333, repeating. The smallest integer greater than the repeating decimal 15.333 is 16.
Explore Courses for ACT exam

Similar ACT Doubts

In a physics class, students conducted a series of experiments by placing different objects into a beaker of water. They conducted twenty trials for each object. For each trial, they recorded whether or not the object floated.First, they placed a steel paper clip into the water. They observed that the paper clip usually sank; however, they also saw that occasionally, the paper clip stayed afloat if it was placed very gently on top of the water. Next, they repeated the the same procedure using a cork, a toy boat made of aluminum, and a glass marble. They observed that both the cork and the toy boat always stayed afloat in the water, but that the glass marble always sank.Below, three students give their explanations for these observations.Student 1:Objects float when they are less dense than the liquid in which they are immersed. For example, when immiscible liquids of varying densities are mixed together in a container, the most dense liquid will sink to the bottom of the container, while the least dense liquid will rise to the top. This same principle applies to solid objects. Because the cork and the aluminum toy boat always float, cork and the aluminum of the boat must be less dense than water. Because the glass marble always sinks, the glass of the marble must be more dense than water.Objects that are more dense than water can also float due to surface tension. Surface tension occurs because molecules of a liquid are more attracted to each other more than they are to other objects. Molecules on the surface of water are attracted to the molecules around them and below them. This attraction causes a liquids surface to behave if it were covered by a thin film, which resists penetration by other objects. Therefore, small objects such as paper clips can sometimes float on water when the upward force of waters surface tension exceeds the force of gravity pulling such objects down. Because the paper clips often sink and only float sometimes, we can conclude that they are indeed more dense than water, and that their floating is due to surface tension.Student 2:Objects float in two different cases: when they are buoyed by a liquids surface tension or when their average density is less than that of the liquid in which they are immersed. The average density of cork is less than that of water. This is why the cork floats. In contrast, the density of glass is more than that of water. This is why the glass marble sinks.However, the densities of aluminum and of steel are greater than that of water. Thus, density cannot be used to explain why the aluminum toy boat and the paper clip float. Both of these objects float because of surface tension. Because the paper clip does not have much mass, the normal upward force created by waters surface tension can be enough to allow it to float. Other objects with greater mass, like the toy boat, employ a particular shape to magnify the force of surface tension. The curved shape of the boats bottom both stabilizes the boat and increases the amount of the boats surface area that touches the water, maximizing the force due to surface tension that the boat receives.Student 3:In this experiment, the paper clip floats because of surface tension; however, the cork, toy boat, and marble float or sink because of their relationship to a buoyant force. All objects immersed in a liquid experience a buoyant force, which pushes them upward. The strength of this force is equal to the weight of the liquid displaced, or pushed aside, by an object. Every object also experiences a downward force due to gravity, which is measured as the objects weight, and which is directly proportional to the objects mass. When the buoyant force acting on an object is greater than the downward force due to gravity, the object floats. However, when the buoyant force is less than the force due to gravity, the object sinks. Both the cork and the aluminum toy boat are able to displace enough water to create a buoyant force that exceeds the force due to gravity, so they float. However, the glass marble does not displace enough water to create a sufficient buoyant force, so it sinks.Q.Paint is more dense than cooking oil; however, when a drop of paint is dripped into a container of cooking oil, it floats on top of the oil. If Student 1s explanation is correct, which of the following is most likely the reason for this observation?

In a physics class, students conducted a series of experiments by placing different objects into a beaker of water. They conducted twenty trials for each object. For each trial, they recorded whether or not the object floated.First, they placed a steel paper clip into the water. They observed that the paper clip usually sank; however, they also saw that occasionally, the paper clip stayed afloat if it was placed very gently on top of the water. Next, they repeated the the same procedure using a cork, a toy boat made of aluminum, and a glass marble. They observed that both the cork and the toy boat always stayed afloat in the water, but that the glass marble always sank.Below, three students give their explanations for these observations.Student 1:Objects float when they are less dense than the liquid in which they are immersed. For example, when immiscible liquids of varying densities are mixed together in a container, the most dense liquid will sink to the bottom of the container, while the least dense liquid will rise to the top. This same principle applies to solid objects. Because the cork and the aluminum toy boat always float, cork and the aluminum of the boat must be less dense than water. Because the glass marble always sinks, the glass of the marble must be more dense than water.Objects that are more dense than water can also float due to surface tension. Surface tension occurs because molecules of a liquid are more attracted to each other more than they are to other objects. Molecules on the surface of water are attracted to the molecules around them and below them. This attraction causes a liquids surface to behave if it were covered by a thin film, which resists penetration by other objects. Therefore, small objects such as paper clips can sometimes float on water when the upward force of waters surface tension exceeds the force of gravity pulling such objects down. Because the paper clips often sink and only float sometimes, we can conclude that they are indeed more dense than water, and that their floating is due to surface tension.Student 2:Objects float in two different cases: when they are buoyed by a liquids surface tension or when their average density is less than that of the liquid in which they are immersed. The average density of cork is less than that of water. This is why the cork floats. In contrast, the density of glass is more than that of water. This is why the glass marble sinks.However, the densities of aluminum and of steel are greater than that of water. Thus, density cannot be used to explain why the aluminum toy boat and the paper clip float. Both of these objects float because of surface tension. Because the paper clip does not have much mass, the normal upward force created by waters surface tension can be enough to allow it to float. Other objects with greater mass, like the toy boat, employ a particular shape to magnify the force of surface tension. The curved shape of the boats bottom both stabilizes the boat and increases the amount of the boats surface area that touches the water, maximizing the force due to surface tension that the boat receives.Student 3:In this experiment, the paper clip floats because of surface tension; however, the cork, toy boat, and marble float or sink because of their relationship to a buoyant force. All objects immersed in a liquid experience a buoyant force, which pushes them upward. The strength of this force is equal to the weight of the liquid displaced, or pushed aside, by an object. Every object also experiences a downward force due to gravity, which is measured as the objects weight, and which is directly proportional to the objects mass. When the buoyant force acting on an object is greater than the downward force due to gravity, the object floats. However, when the buoyant force is less than the force due to gravity, the object sinks. Both the cork and the aluminum toy boat are able to displace enough water to create a buoyant force that exceeds the force due to gravity, so they float. However, the glass marble does not displace enough water to create a sufficient buoyant force, so it sinks.Q.Given that Student 3s explanation is correct, how does the buoyant force on an object held down completely under water compare to the buoyant force on the same object when it is held down partially under water? Compared to the force on the completely-submerged object, the force on the partially-submerged object is __________.

In a physics class, students conducted a series of experiments by placing different objects into a beaker of water. They conducted twenty trials for each object. For each trial, they recorded whether or not the object floated.First, they placed a steel paper clip into the water. They observed that the paper clip usually sank; however, they also saw that occasionally, the paper clip stayed afloat if it was placed very gently on top of the water. Next, they repeated the the same procedure using a cork, a toy boat made of aluminum, and a glass marble. They observed that both the cork and the toy boat always stayed afloat in the water, but that the glass marble always sank.Below, three students give their explanations for these observations.Student 1:Objects float when they are less dense than the liquid in which they are immersed. For example, when immiscible liquids of varying densities are mixed together in a container, the most dense liquid will sink to the bottom of the container, while the least dense liquid will rise to the top. This same principle applies to solid objects. Because the cork and the aluminum toy boat always float, cork and the aluminum of the boat must be less dense than water. Because the glass marble always sinks, the glass of the marble must be more dense than water.Objects that are more dense than water can also float due to surface tension. Surface tension occurs because molecules of a liquid are more attracted to each other more than they are to other objects. Molecules on the surface of water are attracted to the molecules around them and below them. This attraction causes a liquids surface to behave if it were covered by a thin film, which resists penetration by other objects. Therefore, small objects such as paper clips can sometimes float on water when the upward force of waters surface tension exceeds the force of gravity pulling such objects down. Because the paper clips often sink and only float sometimes, we can conclude that they are indeed more dense than water, and that their floating is due to surface tension.Student 2:Objects float in two different cases: when they are buoyed by a liquids surface tension or when their average density is less than that of the liquid in which they are immersed. The average density of cork is less than that of water. This is why the cork floats. In contrast, the density of glass is more than that of water. This is why the glass marble sinks.However, the densities of aluminum and of steel are greater than that of water. Thus, density cannot be used to explain why the aluminum toy boat and the paper clip float. Both of these objects float because of surface tension. Because the paper clip does not have much mass, the normal upward force created by waters surface tension can be enough to allow it to float. Other objects with greater mass, like the toy boat, employ a particular shape to magnify the force of surface tension. The curved shape of the boats bottom both stabilizes the boat and increases the amount of the boats surface area that touches the water, maximizing the force due to surface tension that the boat receives.Student 3:In this experiment, the paper clip floats because of surface tension; however, the cork, toy boat, and marble float or sink because of their relationship to a buoyant force. All objects immersed in a liquid experience a buoyant force, which pushes them upward. The strength of this force is equal to the weight of the liquid displaced, or pushed aside, by an object. Every object also experiences a downward force due to gravity, which is measured as the objects weight, and which is directly proportional to the objects mass. When the buoyant force acting on an object is greater than the downward force due to gravity, the object floats. However, when the buoyant force is less than the force due to gravity, the object sinks. Both the cork and the aluminum toy boat are able to displace enough water to create a buoyant force that exceeds the force due to gravity, so they float. However, the glass marble does not displace enough water to create a sufficient buoyant force, so it sinks.Q. The density of fresh, newly cut wood is less than water, and fresh wood always floats; however, over time, floating pieces of wood may sink. Which of the following explanations would Student 1 most likely give for this observation?

Top Courses for ACT

What is the smallest possible integer for which 15% of that integer is greater than 2.3?a)3b)12c)15d)16e)18Correct answer is option 'D'. Can you explain this answer?
Question Description
What is the smallest possible integer for which 15% of that integer is greater than 2.3?a)3b)12c)15d)16e)18Correct answer is option 'D'. Can you explain this answer? for ACT 2025 is part of ACT preparation. The Question and answers have been prepared according to the ACT exam syllabus. Information about What is the smallest possible integer for which 15% of that integer is greater than 2.3?a)3b)12c)15d)16e)18Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for ACT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for What is the smallest possible integer for which 15% of that integer is greater than 2.3?a)3b)12c)15d)16e)18Correct answer is option 'D'. Can you explain this answer?.
Solutions for What is the smallest possible integer for which 15% of that integer is greater than 2.3?a)3b)12c)15d)16e)18Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for ACT. Download more important topics, notes, lectures and mock test series for ACT Exam by signing up for free.
Here you can find the meaning of What is the smallest possible integer for which 15% of that integer is greater than 2.3?a)3b)12c)15d)16e)18Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of What is the smallest possible integer for which 15% of that integer is greater than 2.3?a)3b)12c)15d)16e)18Correct answer is option 'D'. Can you explain this answer?, a detailed solution for What is the smallest possible integer for which 15% of that integer is greater than 2.3?a)3b)12c)15d)16e)18Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of What is the smallest possible integer for which 15% of that integer is greater than 2.3?a)3b)12c)15d)16e)18Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice What is the smallest possible integer for which 15% of that integer is greater than 2.3?a)3b)12c)15d)16e)18Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice ACT tests.
Explore Courses for ACT exam

Top Courses for ACT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev