GRE Exam  >  GRE Questions  >  PASSAGE:The discoveries of the white dwarf, t... Start Learning for Free
PASSAGE:The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among eh most exciting developments in decades because they may be well present physicists with their greatest challenge since the failure of classical mechanics.  In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation.pressure and the stable gravitational force becomes disturbed and slow contraction begins.  As compression increases, a very dense plasma forms.  If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our sun), the process ceases at the density of 1,000 tons per cubic inch, and the star becomes the white dwarf.  However, if the star was originally more massive, the white dwarf plasma can’t resist the gravitations pressures, and in  rapid collapse, all nuclei of lthe star are converted to a gas of free neutrons.  Gravitational attraction compresses this neutron gas rapidly until a density of 10 tons per cubic inch is reached; at this point the strong nuclear force resists further contraction.  If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational orunch.  The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing.  At this point, a complete collapse of the stellar mass occurs; existing theories predict a collapse to infinite density and infinitely small dimensions  Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star - any photon emitted would fall back under gravitational attraction – and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics.  When  the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight.  This last happened in physics in the 1930’s, when we faced the fundamental paradox concerning atomic structure.  At that time, it was recognized that electrons moved in table orbits about nuclei in atoms. However, it was also recognized that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom.  Studies centered around this paradox led to the development of quantum mechanics.  It may well be that an equivalent t advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.
Q. What are the possible outcomes in the life cycle of a star after all of its fuel has been burned?
  • a)
    B, C and D 
  • b)
    The star becomes a neutron star.
  • c)
    The star becomes a black hole.
  • d)
    The star becomes a white dwarf. 
  • e)
    None of these
Correct answer is option 'A'. Can you explain this answer?
Verified Answer
PASSAGE:The discoveries of the white dwarf, the neutron star, and the ...
In the passage, it is explained that after all of the hydrogen and helium fuel has been burned in a star, a delicate balance between the outer nuclear radiation pressure and the stable gravitational force becomes disturbed and slow contraction begins. The outcome of this contraction depends on the mass of the original star.

If the initial star had a mass of less than 1.4 solar masses, the contraction process ceases at a density of 1,000 tons per cubic inch, and the star becomes a white dwarf.

If the star was originally more massive, the white dwarf plasma can't resist the gravitational pressures, leading to a rapid collapse where all nuclei of the star are converted to a gas of free neutrons. The neutron gas is then compressed by gravitational attraction until a density of 10 tons per cubic inch is reached, at which point the strong nuclear force resists further contraction. This results in the formation of a neutron star.

However, if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational crunch. 
View all questions of this test
Most Upvoted Answer
PASSAGE:The discoveries of the white dwarf, the neutron star, and the ...
In the passage, it is explained that after all of the hydrogen and helium fuel has been burned in a star, a delicate balance between the outer nuclear radiation pressure and the stable gravitational force becomes disturbed and slow contraction begins. The outcome of this contraction depends on the mass of the original star.

If the initial star had a mass of less than 1.4 solar masses, the contraction process ceases at a density of 1,000 tons per cubic inch, and the star becomes a white dwarf.

If the star was originally more massive, the white dwarf plasma can't resist the gravitational pressures, leading to a rapid collapse where all nuclei of the star are converted to a gas of free neutrons. The neutron gas is then compressed by gravitational attraction until a density of 10 tons per cubic inch is reached, at which point the strong nuclear force resists further contraction. This results in the formation of a neutron star.

However, if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational crunch. 
Free Test
Community Answer
PASSAGE:The discoveries of the white dwarf, the neutron star, and the ...


Outcomes in the life cycle of a star after all of its fuel has been burned:

- White Dwarf: If the star had a mass of less than 1.4 solar masses, it becomes a white dwarf with a density of 1,000 tons per cubic inch.

- Neutron Star: If the star had a mass between 1.4 and a few solar masses, it becomes a neutron star with a density of 10 tons per cubic inch.

- Black Hole: If the star had a mass more massive than a few solar masses, it collapses further due to gravitational forces, forming a black hole where even the strong nuclear forces cannot resist the collapse.

Therefore, the possible outcomes in the life cycle of a star after all of its fuel has been burned are a white dwarf, a neutron star, or a black hole, depending on the mass of the original star.
Explore Courses for GRE exam

Top Courses for GRE

Question Description
PASSAGE:The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among eh most exciting developments in decades because they may be well present physicists with their greatest challenge since the failure of classical mechanics. In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation.pressure and the stable gravitational force becomes disturbed and slow contraction begins. As compression increases, a very dense plasma forms. If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our sun), the process ceases at the density of 1,000 tons per cubic inch, and the star becomes the white dwarf. However, if the star was originally more massive, the white dwarf plasma can’t resist the gravitations pressures, and in rapid collapse, all nuclei of lthe star are converted to a gas of free neutrons. Gravitational attraction compresses this neutron gas rapidly until a density of 10 tons per cubic inch is reached; at this point the strong nuclear force resists further contraction. If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational orunch. The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing. At this point, a complete collapse of the stellar mass occurs; existing theories predict a collapse to infinite density and infinitely small dimensions Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star - any photon emitted would fall back under gravitational attraction – and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics. When the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight. This last happened in physics in the 1930’s, when we faced the fundamental paradox concerning atomic structure. At that time, it was recognized that electrons moved in table orbits about nuclei in atoms. However, it was also recognized that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom. Studies centered around this paradox led to the development of quantum mechanics. It may well be that an equivalent t advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.Q.What are the possible outcomes in the life cycle of a star after all of its fuel has been burned?a)B, C and Db)The star becomes a neutron star.c)The star becomes a black hole.d)The star becomes a white dwarf.e)None of theseCorrect answer is option 'A'. Can you explain this answer? for GRE 2025 is part of GRE preparation. The Question and answers have been prepared according to the GRE exam syllabus. Information about PASSAGE:The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among eh most exciting developments in decades because they may be well present physicists with their greatest challenge since the failure of classical mechanics. In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation.pressure and the stable gravitational force becomes disturbed and slow contraction begins. As compression increases, a very dense plasma forms. If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our sun), the process ceases at the density of 1,000 tons per cubic inch, and the star becomes the white dwarf. However, if the star was originally more massive, the white dwarf plasma can’t resist the gravitations pressures, and in rapid collapse, all nuclei of lthe star are converted to a gas of free neutrons. Gravitational attraction compresses this neutron gas rapidly until a density of 10 tons per cubic inch is reached; at this point the strong nuclear force resists further contraction. If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational orunch. The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing. At this point, a complete collapse of the stellar mass occurs; existing theories predict a collapse to infinite density and infinitely small dimensions Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star - any photon emitted would fall back under gravitational attraction – and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics. When the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight. This last happened in physics in the 1930’s, when we faced the fundamental paradox concerning atomic structure. At that time, it was recognized that electrons moved in table orbits about nuclei in atoms. However, it was also recognized that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom. Studies centered around this paradox led to the development of quantum mechanics. It may well be that an equivalent t advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.Q.What are the possible outcomes in the life cycle of a star after all of its fuel has been burned?a)B, C and Db)The star becomes a neutron star.c)The star becomes a black hole.d)The star becomes a white dwarf.e)None of theseCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for GRE 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for PASSAGE:The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among eh most exciting developments in decades because they may be well present physicists with their greatest challenge since the failure of classical mechanics. In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation.pressure and the stable gravitational force becomes disturbed and slow contraction begins. As compression increases, a very dense plasma forms. If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our sun), the process ceases at the density of 1,000 tons per cubic inch, and the star becomes the white dwarf. However, if the star was originally more massive, the white dwarf plasma can’t resist the gravitations pressures, and in rapid collapse, all nuclei of lthe star are converted to a gas of free neutrons. Gravitational attraction compresses this neutron gas rapidly until a density of 10 tons per cubic inch is reached; at this point the strong nuclear force resists further contraction. If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational orunch. The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing. At this point, a complete collapse of the stellar mass occurs; existing theories predict a collapse to infinite density and infinitely small dimensions Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star - any photon emitted would fall back under gravitational attraction – and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics. When the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight. This last happened in physics in the 1930’s, when we faced the fundamental paradox concerning atomic structure. At that time, it was recognized that electrons moved in table orbits about nuclei in atoms. However, it was also recognized that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom. Studies centered around this paradox led to the development of quantum mechanics. It may well be that an equivalent t advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.Q.What are the possible outcomes in the life cycle of a star after all of its fuel has been burned?a)B, C and Db)The star becomes a neutron star.c)The star becomes a black hole.d)The star becomes a white dwarf.e)None of theseCorrect answer is option 'A'. Can you explain this answer?.
Solutions for PASSAGE:The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among eh most exciting developments in decades because they may be well present physicists with their greatest challenge since the failure of classical mechanics. In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation.pressure and the stable gravitational force becomes disturbed and slow contraction begins. As compression increases, a very dense plasma forms. If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our sun), the process ceases at the density of 1,000 tons per cubic inch, and the star becomes the white dwarf. However, if the star was originally more massive, the white dwarf plasma can’t resist the gravitations pressures, and in rapid collapse, all nuclei of lthe star are converted to a gas of free neutrons. Gravitational attraction compresses this neutron gas rapidly until a density of 10 tons per cubic inch is reached; at this point the strong nuclear force resists further contraction. If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational orunch. The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing. At this point, a complete collapse of the stellar mass occurs; existing theories predict a collapse to infinite density and infinitely small dimensions Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star - any photon emitted would fall back under gravitational attraction – and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics. When the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight. This last happened in physics in the 1930’s, when we faced the fundamental paradox concerning atomic structure. At that time, it was recognized that electrons moved in table orbits about nuclei in atoms. However, it was also recognized that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom. Studies centered around this paradox led to the development of quantum mechanics. It may well be that an equivalent t advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.Q.What are the possible outcomes in the life cycle of a star after all of its fuel has been burned?a)B, C and Db)The star becomes a neutron star.c)The star becomes a black hole.d)The star becomes a white dwarf.e)None of theseCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for GRE. Download more important topics, notes, lectures and mock test series for GRE Exam by signing up for free.
Here you can find the meaning of PASSAGE:The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among eh most exciting developments in decades because they may be well present physicists with their greatest challenge since the failure of classical mechanics. In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation.pressure and the stable gravitational force becomes disturbed and slow contraction begins. As compression increases, a very dense plasma forms. If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our sun), the process ceases at the density of 1,000 tons per cubic inch, and the star becomes the white dwarf. However, if the star was originally more massive, the white dwarf plasma can’t resist the gravitations pressures, and in rapid collapse, all nuclei of lthe star are converted to a gas of free neutrons. Gravitational attraction compresses this neutron gas rapidly until a density of 10 tons per cubic inch is reached; at this point the strong nuclear force resists further contraction. If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational orunch. The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing. At this point, a complete collapse of the stellar mass occurs; existing theories predict a collapse to infinite density and infinitely small dimensions Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star - any photon emitted would fall back under gravitational attraction – and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics. When the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight. This last happened in physics in the 1930’s, when we faced the fundamental paradox concerning atomic structure. At that time, it was recognized that electrons moved in table orbits about nuclei in atoms. However, it was also recognized that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom. Studies centered around this paradox led to the development of quantum mechanics. It may well be that an equivalent t advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.Q.What are the possible outcomes in the life cycle of a star after all of its fuel has been burned?a)B, C and Db)The star becomes a neutron star.c)The star becomes a black hole.d)The star becomes a white dwarf.e)None of theseCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of PASSAGE:The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among eh most exciting developments in decades because they may be well present physicists with their greatest challenge since the failure of classical mechanics. In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation.pressure and the stable gravitational force becomes disturbed and slow contraction begins. As compression increases, a very dense plasma forms. If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our sun), the process ceases at the density of 1,000 tons per cubic inch, and the star becomes the white dwarf. However, if the star was originally more massive, the white dwarf plasma can’t resist the gravitations pressures, and in rapid collapse, all nuclei of lthe star are converted to a gas of free neutrons. Gravitational attraction compresses this neutron gas rapidly until a density of 10 tons per cubic inch is reached; at this point the strong nuclear force resists further contraction. If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational orunch. The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing. At this point, a complete collapse of the stellar mass occurs; existing theories predict a collapse to infinite density and infinitely small dimensions Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star - any photon emitted would fall back under gravitational attraction – and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics. When the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight. This last happened in physics in the 1930’s, when we faced the fundamental paradox concerning atomic structure. At that time, it was recognized that electrons moved in table orbits about nuclei in atoms. However, it was also recognized that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom. Studies centered around this paradox led to the development of quantum mechanics. It may well be that an equivalent t advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.Q.What are the possible outcomes in the life cycle of a star after all of its fuel has been burned?a)B, C and Db)The star becomes a neutron star.c)The star becomes a black hole.d)The star becomes a white dwarf.e)None of theseCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for PASSAGE:The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among eh most exciting developments in decades because they may be well present physicists with their greatest challenge since the failure of classical mechanics. In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation.pressure and the stable gravitational force becomes disturbed and slow contraction begins. As compression increases, a very dense plasma forms. If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our sun), the process ceases at the density of 1,000 tons per cubic inch, and the star becomes the white dwarf. However, if the star was originally more massive, the white dwarf plasma can’t resist the gravitations pressures, and in rapid collapse, all nuclei of lthe star are converted to a gas of free neutrons. Gravitational attraction compresses this neutron gas rapidly until a density of 10 tons per cubic inch is reached; at this point the strong nuclear force resists further contraction. If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational orunch. The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing. At this point, a complete collapse of the stellar mass occurs; existing theories predict a collapse to infinite density and infinitely small dimensions Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star - any photon emitted would fall back under gravitational attraction – and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics. When the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight. This last happened in physics in the 1930’s, when we faced the fundamental paradox concerning atomic structure. At that time, it was recognized that electrons moved in table orbits about nuclei in atoms. However, it was also recognized that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom. Studies centered around this paradox led to the development of quantum mechanics. It may well be that an equivalent t advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.Q.What are the possible outcomes in the life cycle of a star after all of its fuel has been burned?a)B, C and Db)The star becomes a neutron star.c)The star becomes a black hole.d)The star becomes a white dwarf.e)None of theseCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of PASSAGE:The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among eh most exciting developments in decades because they may be well present physicists with their greatest challenge since the failure of classical mechanics. In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation.pressure and the stable gravitational force becomes disturbed and slow contraction begins. As compression increases, a very dense plasma forms. If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our sun), the process ceases at the density of 1,000 tons per cubic inch, and the star becomes the white dwarf. However, if the star was originally more massive, the white dwarf plasma can’t resist the gravitations pressures, and in rapid collapse, all nuclei of lthe star are converted to a gas of free neutrons. Gravitational attraction compresses this neutron gas rapidly until a density of 10 tons per cubic inch is reached; at this point the strong nuclear force resists further contraction. If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational orunch. The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing. At this point, a complete collapse of the stellar mass occurs; existing theories predict a collapse to infinite density and infinitely small dimensions Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star - any photon emitted would fall back under gravitational attraction – and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics. When the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight. This last happened in physics in the 1930’s, when we faced the fundamental paradox concerning atomic structure. At that time, it was recognized that electrons moved in table orbits about nuclei in atoms. However, it was also recognized that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom. Studies centered around this paradox led to the development of quantum mechanics. It may well be that an equivalent t advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.Q.What are the possible outcomes in the life cycle of a star after all of its fuel has been burned?a)B, C and Db)The star becomes a neutron star.c)The star becomes a black hole.d)The star becomes a white dwarf.e)None of theseCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice PASSAGE:The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among eh most exciting developments in decades because they may be well present physicists with their greatest challenge since the failure of classical mechanics. In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation.pressure and the stable gravitational force becomes disturbed and slow contraction begins. As compression increases, a very dense plasma forms. If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our sun), the process ceases at the density of 1,000 tons per cubic inch, and the star becomes the white dwarf. However, if the star was originally more massive, the white dwarf plasma can’t resist the gravitations pressures, and in rapid collapse, all nuclei of lthe star are converted to a gas of free neutrons. Gravitational attraction compresses this neutron gas rapidly until a density of 10 tons per cubic inch is reached; at this point the strong nuclear force resists further contraction. If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational orunch. The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing. At this point, a complete collapse of the stellar mass occurs; existing theories predict a collapse to infinite density and infinitely small dimensions Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star - any photon emitted would fall back under gravitational attraction – and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics. When the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight. This last happened in physics in the 1930’s, when we faced the fundamental paradox concerning atomic structure. At that time, it was recognized that electrons moved in table orbits about nuclei in atoms. However, it was also recognized that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom. Studies centered around this paradox led to the development of quantum mechanics. It may well be that an equivalent t advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.Q.What are the possible outcomes in the life cycle of a star after all of its fuel has been burned?a)B, C and Db)The star becomes a neutron star.c)The star becomes a black hole.d)The star becomes a white dwarf.e)None of theseCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice GRE tests.
Explore Courses for GRE exam

Top Courses for GRE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev