ACT Exam  >  ACT Questions  >  You have enough material to build a fence 120... Start Learning for Free
You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?
  • a)
    900
  • b)
    480
  • c)
    240
  • d)
    120
  • e)
    60
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
You have enough material to build a fence 120-feet long. If you use it...
Enclosing a square region with 120 feet of fence would make each side of the square 120/4, or 30 feet. Therefore, the number of square feet enclosed is the area of the region, which would be 302, or 900 square feet.
Free Test
Community Answer
You have enough material to build a fence 120-feet long. If you use it...
Explanation:

Given:
- Length of material = 120 feet

To find:
- Area of the square region enclosed

Approach:
- Since we need to enclose a square region, all four sides of the square will be equal in length.
- Let each side of the square be 'x' feet.
- Perimeter of the square = 4x
- Given that the length of material is 120 feet, so 4x = 120
- Solving for x, we get x = 30 feet

Calculation:
- Area of a square = side * side
- Area = 30 * 30 = 900 square feet
Therefore, the square region enclosed will have an area of 900 square feet. Hence, the correct answer is option 'a) 900'.
Explore Courses for ACT exam

Similar ACT Doubts

Directions:Read the passages and choose the best answer to each question.PassageStudents debate 4 hypotheses regarding the origin of the asteroid belt located between Mars and Jupiter, based on the following observations.ObservationsObservation 1- If all of the asteroids were gathered together into one object, the diameter of the object formed would be less than half the diameter of Earth’s Moon.Observation 2- The total mass of the asteroid belt is only 4% that of the Moon. One asteroid alone, Ceres, contains 1/3 of the total mass of the asteroid belt.Observation 3- Asteroids are largely composed of silicate, with some deposits of iron and nickel, a composition proportionately similar to that of the terrestrial planets.Some asteroids also contain carbon and other elements.Observation 4- There is a strong orbital resonance (overlapping gravity) with Jupiter in the region of the asteroid belt, which keeps the asteroids in an orbit around the sun.Observation 5- In reality, asteroids within the belt are very far apart, not clustered together.Observation 6- Within the early solar system, the velocity of collisions within the region of the asteroid belt was much higher than it is currently.Hypothesis 1All of the material that makes up the asteroids in the asteroid belt is similar to that of the material that makes up the terrestrial planets. The velocity of collisions in the early solar system was at one time high enough to break apart planets as they formed. Since one asteroid, Ceres, has 1/3 the total mass of the belt, the asteroids are most likely the result of a partially formed planet that broke apart and became trapped in an orbit between Mars and Jupiter.Hypothesis 2 The material that composes the asteroids is similar to that of the terrestrial planets. The belt likely formed during the same time that the planets were forming, and due to the strong orbital resonance with the gas giant Jupiter and high velocity collisions, chunks of the material were pulled away from various planets and trapped within orbit. This also explains the varying composition of the asteroids throughout the belt.Hypothesis 3 The asteroids could not once have been a planet, because there is not enough material within the entire belt to form a planet-sized object. The lack of material, shown by the total diameter and mass of the objects within the belt, is proof that the asteroids are no more than large particles left over from the formation of the terrestrial planets from a single cloud of material.Hypothesis 4 The asteroids most likely came from somewhere outside the solar system. As they passed through space at varying intervals, they were trapped by the large orbital resonance of Jupiter and formed a “belt.” The vast distances between most of the asteroids in the belt are evidence that they did not come from a singular source, but arrived at different points in the belt’s development.Q.Which of the following assumptions regarding the asteroid belt’s origins is implicit in Hypothesis 1?

Magnets and electric charges show certain similarities. For example, both magnets and electric charges can exert a force on their surroundings. This force, when produced by a magnet, is called a magnetic field. When it is produced by an electric charge, the force is called an electric field. It has been observed that the strength of both magnetic fields and electric fields is inversely proportional to the square of the distance between a magnet or an electric charge and the objects that they affect.Below, three scientists debate the relationship between electricity and magnetism.Scientist 1:Electricity and magnetism are two different phenomena. Materials such as iron, cobalt, and nickel contain magnetic domains: tiny regions of magnetism, each with two poles. Normally, the domains have a random orientation and are not aligned, so the magnetism of some domains cancels out that of other domains; however, in magnets, domains line up in the same direction, creating the two poles of the magnet and causing magnetic behavior.In contrast, electricity is a moving electric charge which is caused by the flow of electrons through a material. Electrons flow through a material from a region of higher potential (more negative charg e) to a region of lower potential (more positive charge). We can measure this flow of electrons as current, which refers to the amount of charge transferred over a period of time.Scientist 2:Electricity and magnetism are similar phenomena; however, one cannot be reduced to the other. Electricity involves two types of charges: positive and negative charge. Though electricity can occur in a moving form (in the form of current, or an electric charge moving through a wire), it can also occur in a static form. Static electricity involves no moving charge. Instead, objects can have a net excess of positive charge or a net excess of negative charge—because of having lost or gained electrons, respectively. When two static positive electric charges or two static negative electric charges are brought close together, they repel each other. However, when a positive and a negative static charge are brought together, they attract each other.Similarly, all magnets have two poles. Magnetic poles that are alike repel each other, while dissimilar magnetic poles attract each other. Magnets and static electric charges are alike in that they both show attraction and repulsion in similar circumstances. However, while isolated static electric charges occur in nature, there are no single, isolated magnetic poles. All magnets have two poles, which cannot be dissociated from each other.Scientist 3:Electricity and magnetism are two aspects of the same phenomenon. A moving flow of electrons creates a magnetic field around it. Thus, wherever an electric current exists, a magnetic field will also exist. The magnetic field created by an electric current is perpendicular to the electric currents direction of flow.Additionally, a magnetic field can induce an electric current. This can happen when a wire is moved across a magnetic field, or when a magnetic field is moved near a conductive wire. Because magnetic fields can produce electric fields and electric fields can produce magnetic fields, we can understand electricity and magnetism as parts of one phenomenon: electromagnetism.Q. Which of the following would be an example of electricity according to Scientist 2, but not according to Scientist 1?

Directions:Read the passages and choose the best answer to each question.PassageStudents debate 4 hypotheses regarding the origin of the asteroid belt located between Mars and Jupiter, based on the following observations.ObservationsObservation 1- If all of the asteroids were gathered together into one object, the diameter of the object formed would be less than half the diameter of Earth’s Moon.Observation 2- The total mass of the asteroid belt is only 4% that of the Moon. One asteroid alone, Ceres, contains 1/3 of the total mass of the asteroid belt.Observation 3- Asteroids are largely composed of silicate, with some deposits of iron and nickel, a composition proportionately similar to that of the terrestrial planets.Some asteroids also contain carbon and other elements.Observation 4- There is a strong orbital resonance (overlapping gravity) with Jupiter in the region of the asteroid belt, which keeps the asteroids in an orbit around the sun.Observation 5- In reality, asteroids within the belt are very far apart, not clustered together.Observation 6- Within the early solar system, the velocity of collisions within the region of the asteroid belt was much higher than it is currently.Hypothesis 1All of the material that makes up the asteroids in the asteroid belt is similar to that of the material that makes up the terrestrial planets. The velocity of collisions in the early solar system was at one time high enough to break apart planets as they formed. Since one asteroid, Ceres, has 1/3 the total mass of the belt, the asteroids are most likely the result of a partially formed planet that broke apart and became trapped in an orbit between Mars and Jupiter.Hypothesis 2 The material that composes the asteroids is similar to that of the terrestrial planets. The belt likely formed during the same time that the planets were forming, and due to the strong orbital resonance with the gas giant Jupiter and high velocity collisions, chunks of the material were pulled away from various planets and trapped within orbit. This also explains the varying composition of the asteroids throughout the belt.Hypothesis 3 The asteroids could not once have been a planet, because there is not enough material within the entire belt to form a planet-sized object. The lack of material, shown by the total diameter and mass of the objects within the belt, is proof that the asteroids are no more than large particles left over from the formation of the terrestrial planets from a single cloud of material.Hypothesis 4 The asteroids most likely came from somewhere outside the solar system. As they passed through space at varying intervals, they were trapped by the large orbital resonance of Jupiter and formed a “belt.” The vast distances between most of the asteroids in the belt are evidence that they did not come from a singular source, but arrived at different points in the belt’s development.Q. Suppose that supporters of Hypothesis 2 suggested that the asteroid belt, when it was first formed, contained dense formations of ice and debris slightly bigger than current asteroids. Which of the following statements about the asteroids’ composition would be most consistent with their suggestion?

Magnets and electric charges show certain similarities. For example, both magnets and electric charges can exert a force on their surroundings. This force, when produced by a magnet, is called a magnetic field. When it is produced by an electric charge, the force is called an electric field. It has been observed that the strength of both magnetic fields and electric fields is inversely proportional to the square of the distance between a magnet or an electric charge and the objects that they affect.Below, three scientists debate the relationship between electricity and magnetism.Scientist 1:Electricity and magnetism are two different phenomena. Materials such as iron, cobalt, and nickel contain magnetic domains: tiny regions of magnetism, each with two poles. Normally, the domains have a random orientation and are not aligned, so the magnetism of some domains cancels out that of other domains; however, in magnets, domains line up in the same direction, creating the two poles of the magnet and causing magnetic behavior.In contrast, electricity is a moving electric charge which is caused by the flow of electrons through a material. Electrons flow through a material from a region of higher potential (more negative charg e) to a region of lower potential (more positive charge). We can measure this flow of electrons as current, which refers to the amount of charge transferred over a period of time.Scientist 2:Electricity and magnetism are similar phenomena; however, one cannot be reduced to the other. Electricity involves two types of charges: positive and negative charge. Though electricity can occur in a moving form (in the form of current, or an electric charge moving through a wire), it can also occur in a static form. Static electricity involves no moving charge. Instead, objects can have a net excess of positive charge or a net excess of negative charge—because of having lost or gained electrons, respectively. When two static positive electric charges or two static negative electric charges are brought close together, they repel each other. However, when a positive and a negative static charge are brought together, they attract each other.Similarly, all magnets have two poles. Magnetic poles that are alike repel each other, while dissimilar magnetic poles attract each other. Magnets and static electric charges are alike in that they both show attraction and repulsion in similar circumstances. However, while isolated static electric charges occur in nature, there are no single, isolated magnetic poles. All magnets have two poles, which cannot be dissociated from each other.Scientist 3:Electricity and magnetism are two aspects of the same phenomenon. A moving flow of electrons creates a magnetic field around it. Thus, wherever an electric current exists, a magnetic field will also exist. The magnetic field created by an electric current is perpendicular to the electric currents direction of flow.Additionally, a magnetic field can induce an electric current. This can happen when a wire is moved across a magnetic field, or when a magnetic field is moved near a conductive wire. Because magnetic fields can produce electric fields and electric fields can produce magnetic fields, we can understand electricity and magnetism as parts of one phenomenon: electromagnetism.Q. According to Scientist 2, which of the following would be an example of a static electric charge?

Directions:Read the passages and choose the best answer to each question.PassageStudents debate 4 hypotheses regarding the origin of the asteroid belt located between Mars and Jupiter, based on the following observations.ObservationsObservation 1- If all of the asteroids were gathered together into one object, the diameter of the object formed would be less than half the diameter of Earth’s Moon.Observation 2- The total mass of the asteroid belt is only 4% that of the Moon. One asteroid alone, Ceres, contains 1/3 of the total mass of the asteroid belt.Observation 3- Asteroids are largely composed of silicate, with some deposits of iron and nickel, a composition proportionately similar to that of the terrestrial planets.Some asteroids also contain carbon and other elements.Observation 4- There is a strong orbital resonance (overlapping gravity) with Jupiter in the region of the asteroid belt, which keeps the asteroids in an orbit around the sun.Observation 5- In reality, asteroids within the belt are very far apart, not clustered together.Observation 6- Within the early solar system, the velocity of collisions within the region of the asteroid belt was much higher than it is currently.Hypothesis 1All of the material that makes up the asteroids in the asteroid belt is similar to that of the material that makes up the terrestrial planets. The velocity of collisions in the early solar system was at one time high enough to break apart planets as they formed. Since one asteroid, Ceres, has 1/3 the total mass of the belt, the asteroids are most likely the result of a partially formed planet that broke apart and became trapped in an orbit between Mars and Jupiter.Hypothesis 2 The material that composes the asteroids is similar to that of the terrestrial planets. The belt likely formed during the same time that the planets were forming, and due to the strong orbital resonance with the gas giant Jupiter and high velocity collisions, chunks of the material were pulled away from various planets and trapped within orbit. This also explains the varying composition of the asteroids throughout the belt.Hypothesis 3 The asteroids could not once have been a planet, because there is not enough material within the entire belt to form a planet-sized object. The lack of material, shown by the total diameter and mass of the objects within the belt, is proof that the asteroids are no more than large particles left over from the formation of the terrestrial planets from a single cloud of material.Hypothesis 4 The asteroids most likely came from somewhere outside the solar system. As they passed through space at varying intervals, they were trapped by the large orbital resonance of Jupiter and formed a “belt.” The vast distances between most of the asteroids in the belt are evidence that they did not come from a singular source, but arrived at different points in the belt’s development.Q. With which of the following statements would supporters of all four hypotheses agree?

Top Courses for ACT

You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?a)900b)480c)240d)120e)60Correct answer is option 'A'. Can you explain this answer?
Question Description
You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?a)900b)480c)240d)120e)60Correct answer is option 'A'. Can you explain this answer? for ACT 2025 is part of ACT preparation. The Question and answers have been prepared according to the ACT exam syllabus. Information about You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?a)900b)480c)240d)120e)60Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for ACT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?a)900b)480c)240d)120e)60Correct answer is option 'A'. Can you explain this answer?.
Solutions for You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?a)900b)480c)240d)120e)60Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for ACT. Download more important topics, notes, lectures and mock test series for ACT Exam by signing up for free.
Here you can find the meaning of You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?a)900b)480c)240d)120e)60Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?a)900b)480c)240d)120e)60Correct answer is option 'A'. Can you explain this answer?, a detailed solution for You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?a)900b)480c)240d)120e)60Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?a)900b)480c)240d)120e)60Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice You have enough material to build a fence 120-feet long. If you use it all to enclose a square region, how many square feet will you enclose?a)900b)480c)240d)120e)60Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice ACT tests.
Explore Courses for ACT exam

Top Courses for ACT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev