Question Description
Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passage states that a hereditary unit is called:a)a chromosome.b)a gene.c)an organism.d)a characteristic.Correct answer is option 'B'. Can you explain this answer? for ACT 2025 is part of ACT preparation. The Question and answers have been prepared
according to
the ACT exam syllabus. Information about Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passage states that a hereditary unit is called:a)a chromosome.b)a gene.c)an organism.d)a characteristic.Correct answer is option 'B'. Can you explain this answer? covers all topics & solutions for ACT 2025 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passage states that a hereditary unit is called:a)a chromosome.b)a gene.c)an organism.d)a characteristic.Correct answer is option 'B'. Can you explain this answer?.
Solutions for Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passage states that a hereditary unit is called:a)a chromosome.b)a gene.c)an organism.d)a characteristic.Correct answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for ACT.
Download more important topics, notes, lectures and mock test series for ACT Exam by signing up for free.
Here you can find the meaning of Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passage states that a hereditary unit is called:a)a chromosome.b)a gene.c)an organism.d)a characteristic.Correct answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passage states that a hereditary unit is called:a)a chromosome.b)a gene.c)an organism.d)a characteristic.Correct answer is option 'B'. Can you explain this answer?, a detailed solution for Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passage states that a hereditary unit is called:a)a chromosome.b)a gene.c)an organism.d)a characteristic.Correct answer is option 'B'. Can you explain this answer? has been provided alongside types of Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passage states that a hereditary unit is called:a)a chromosome.b)a gene.c)an organism.d)a characteristic.Correct answer is option 'B'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passage states that a hereditary unit is called:a)a chromosome.b)a gene.c)an organism.d)a characteristic.Correct answer is option 'B'. Can you explain this answer? tests, examples and also practice ACT tests.