JEE Exam  >  JEE Questions  >  Can you explain the answer of this question b... Start Learning for Free
Can you explain the answer of this question below:
Particle nature and wave nature of electromagnetic waves and electrons be shown by
  • A:
    Electrons have small mass, deflected by the metal sheet
  • B:
    X-ray is diffracted, reflected by thick metal sheet
  • C:
    Light is refracted and diffracted
  • D:
    Photoelectricity and electron microscopy
The answer is d.
Most Upvoted Answer
Can you explain the answer of this question below:Particle nature and ...
Particle nature and wave nature of electromagnetic waves and electrons can be shown by various phenomena, but the correct answer is option 'D' which includes photoelectricity and electron microscopy. Let's understand why.

Photoelectric effect:
The photoelectric effect is the phenomenon where electrons are ejected from a metal surface when light falls on it. This can only be explained by the particle nature of light, where light is considered to be made up of tiny particles called photons. The energy of each photon is directly proportional to its frequency, and if the energy of a photon is greater than the work function of the metal, electrons will be ejected. This phenomenon cannot be explained by the wave nature of light.

Electron microscopy:
Electron microscopy is a technique that uses beams of electrons to image objects at high magnification. This can only be explained by the wave nature of electrons, where electrons are considered to have a wavelength. The wavelength of an electron is inversely proportional to its momentum, and if the momentum of an electron is high enough, its wavelength can be small enough to resolve small objects. This phenomenon cannot be explained by the particle nature of electrons.

Therefore, both photoelectric effect and electron microscopy show the particle nature and wave nature of electromagnetic waves and electrons respectively, and hence the correct answer is option 'D'.
Free Test
Community Answer
Can you explain the answer of this question below:Particle nature and ...
Https://edurev.page.link/12zbFeYVGfRayniJA
https://iopscience.iop.org/article/10.1088/0143-0807/30/1/023/meta
Explore Courses for JEE exam

Similar JEE Doubts

Can you explain the answer of this question below:The French physicist Louis de-Broglie in 1924 postulated that matter, like radiation, should exhibit a dual behaviour. He proposed the following relationship between the wavelength of a material particle, its linear momentum p and planck constant h.The de Broglie relation implies that the wavelength of a particle should decreases as its velocity increases. It also implies that for a given velocity heavier particles should have shorter wavelength than lighter particles. The waves associated with particles in motion are called matter waves or de Broglie waves.These waves differ from the electromagnetic waves as they,(i) have lower velocities(ii) have no electrical and magnetic fields and(iii) are not emitted by the particle under consideration.The experimental confirmation of the deBroglie relation was obtained when Davisson and Germer, in 1927, observed that a beam of electrons is diffracted by a nickel crystal. As diffraction is a characteristic property of waves, hence the beam of electron behaves as a wave, as proposed by deBroglie.Werner Heisenberg considered the limits of how precisely we can measure properties of an electron or other microscopic particle like electron. He determined that there is a fundamental limit of how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse is also ture. This is summed up in what we now call the Heisenberg uncertainty principle : It is impossible to determine simultaneously and precisely both the momentum and position of a particle. The product of undertainty in the position, x and the uncertainity in the momentum (mv) must be greater than or equal to h/4. i.e.Q.The correct order of wavelength of Hydrogen (1H1), Deuterium (1H2) and Tritium (1H3) moving with same kinetic energy is :A:H D TB:H = D = TC:H D TD:H D TThe answer is a.

The French physicist Louis de-Broglie in 1924 postulated that matter, like radiation, should exhibit a dual behaviour. He proposed the following relationship between the wavelength of a material particle, its linear momentum p and planck constant h.The de Broglie relation implies that the wavelength of a particle should decreases as its velocity increases. It also implies that for a given velocity heavier particles should have shorter wavelength than lighter particles. The waves associated with particles in motion are called matter waves or de Broglie waves.These waves differ from the electromagnetic waves as they,(i) have lower velocities(ii) have no electrical and magnetic fields and(iii) are not emitted by the particle under consideration.The experimental confirmation of the deBroglie relation was obtained when Davisson and Germer, in 1927, observed that a beam of electrons is diffracted by a nickel crystal. As diffraction is a characteristic property of waves, hence the beam of electron behaves as a wave, as proposed by deBroglie.Werner Heisenberg considered the limits of how precisely we can measure properties of an electron or other microscopic particle like electron. He determined that there is a fundamental limit of how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse is also ture. This is summed up in what we now call the Heisenberg uncertainty principle : It is impossible to determine simultaneously and precisely both the momentum and position of a particle. The product of undertainty in the position, x and the uncertainity in the momentum (mv) must be greater than or equal to h/4. i.e.Q. The transition, so that the de - Broglie wavelength of electron becomes 3 times of its initial value in He+ ion will be

The French physicist Louis de-Broglie in 1924 postulated that matter, like radiation, should exhibit a dual behaviour. He proposed the following relationship between the wavelength of a material particle, its linear momentum p and planck constant h.The de Broglie relation implies that the wavelength of a particle should decreases as its velocity increases. It also implies that for a given velocity heavier particles should have shorter wavelength than lighter particles. The waves associated with particles in motion are called matter waves or de Broglie waves.These waves differ from the electromagnetic waves as they,(i) have lower velocities(ii) have no electrical and magnetic fields and(iii) are not emitted by the particle under consideration.The experimental confirmation of the deBroglie relation was obtained when Davisson and Germer, in 1927, observed that a beam of electrons is diffracted by a nickel crystal. As diffraction is a characteristic property of waves, hence the beam of electron behaves as a wave, as proposed by deBroglie.Werner Heisenberg considered the limits of how precisely we can measure properties of an electron or other microscopic particle like electron. He determined that there is a fundamental limit of how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse is also ture. This is summed up in what we now call the Heisenberg uncertainty principle : It is impossible to determine simultaneously and precisely both the momentum and position of a particle. The product of undertainty in the position, x and the uncertainity in the momentum (mv) must be greater than or equal to h/4. i.e.Q. If the uncertainty in velocity position is same, then the uncertainty in momentum will be

Can you explain the answer of this question below:Particle nature and wave nature of electromagnetic waves and electrons be shown byA: Electrons have small mass, deflected by the metal sheet B: X-ray is diffracted, reflected by thick metal sheet C: Light is refracted and diffracted D: Photoelectricity and electron microscopy The answer is d.
Question Description
Can you explain the answer of this question below:Particle nature and wave nature of electromagnetic waves and electrons be shown byA: Electrons have small mass, deflected by the metal sheet B: X-ray is diffracted, reflected by thick metal sheet C: Light is refracted and diffracted D: Photoelectricity and electron microscopy The answer is d. for JEE 2025 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about Can you explain the answer of this question below:Particle nature and wave nature of electromagnetic waves and electrons be shown byA: Electrons have small mass, deflected by the metal sheet B: X-ray is diffracted, reflected by thick metal sheet C: Light is refracted and diffracted D: Photoelectricity and electron microscopy The answer is d. covers all topics & solutions for JEE 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Can you explain the answer of this question below:Particle nature and wave nature of electromagnetic waves and electrons be shown byA: Electrons have small mass, deflected by the metal sheet B: X-ray is diffracted, reflected by thick metal sheet C: Light is refracted and diffracted D: Photoelectricity and electron microscopy The answer is d..
Solutions for Can you explain the answer of this question below:Particle nature and wave nature of electromagnetic waves and electrons be shown byA: Electrons have small mass, deflected by the metal sheet B: X-ray is diffracted, reflected by thick metal sheet C: Light is refracted and diffracted D: Photoelectricity and electron microscopy The answer is d. in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of Can you explain the answer of this question below:Particle nature and wave nature of electromagnetic waves and electrons be shown byA: Electrons have small mass, deflected by the metal sheet B: X-ray is diffracted, reflected by thick metal sheet C: Light is refracted and diffracted D: Photoelectricity and electron microscopy The answer is d. defined & explained in the simplest way possible. Besides giving the explanation of Can you explain the answer of this question below:Particle nature and wave nature of electromagnetic waves and electrons be shown byA: Electrons have small mass, deflected by the metal sheet B: X-ray is diffracted, reflected by thick metal sheet C: Light is refracted and diffracted D: Photoelectricity and electron microscopy The answer is d., a detailed solution for Can you explain the answer of this question below:Particle nature and wave nature of electromagnetic waves and electrons be shown byA: Electrons have small mass, deflected by the metal sheet B: X-ray is diffracted, reflected by thick metal sheet C: Light is refracted and diffracted D: Photoelectricity and electron microscopy The answer is d. has been provided alongside types of Can you explain the answer of this question below:Particle nature and wave nature of electromagnetic waves and electrons be shown byA: Electrons have small mass, deflected by the metal sheet B: X-ray is diffracted, reflected by thick metal sheet C: Light is refracted and diffracted D: Photoelectricity and electron microscopy The answer is d. theory, EduRev gives you an ample number of questions to practice Can you explain the answer of this question below:Particle nature and wave nature of electromagnetic waves and electrons be shown byA: Electrons have small mass, deflected by the metal sheet B: X-ray is diffracted, reflected by thick metal sheet C: Light is refracted and diffracted D: Photoelectricity and electron microscopy The answer is d. tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev