If log 3 base a = 2 and log 8 base b = 3 then log b base a is?
**Given Information:**
- log 3 base a = 2
- log 8 base b = 3
**To Find:**
- log b base a
**Solution:**
To find log b base a, we need to rewrite the logarithms using the change of base formula.
**Change of Base Formula:**
log a base b = log c base b / log c base a
Using the change of base formula, we can rewrite the given equations as follows:
log 3 base a = log 3 base 10 / log a base 10 = 2
log 8 base b = log 8 base 10 / log b base 10 = 3
Now, let's solve each equation step by step.
**Solving log 3 base a = 2:**
log 3 base 10 / log a base 10 = 2
log 3 base 10 = 2 * log a base 10
log 3 base 10 = log a^2 base 10
3 = a^2
a = √3
**Solving log 8 base b = 3:**
log 8 base 10 / log b base 10 = 3
log 2^3 base 10 / log b base 10 = 3
3 * log 2 base 10 / log b base 10 = 3
log 2 base 10 / log b base 10 = 1
log 2 base b = 1
2 = b
Now, we have found the values of a and b:
a = √3
b = 2
**Finding log b base a:**
log b base a = log 2 base √3
Using the change of base formula:
log 2 base √3 = log 2 base 10 / log √3 base 10
= log 2 base 10 / (1/2) * log 3 base 10
= 2 * log 2 base 10 / log 3 base 10
Now, we know that log 3 base a = 2. Therefore,
2 * log 2 base 10 / log 3 base 10 = 2 * 1 / 2 = 1
So, log b base a is equal to 1.
Therefore, log b base a = 1.