JEE Exam  >  JEE Questions  >  y = A ex + B e2x + C e3xsatisfies the diferen... Start Learning for Free
y = A ex + B e2x  + C e3x  satisfies the diferential equation
  • a)
    y ‴ − 6 y ″ + 11 y ′ − 6 y = 0
  • b)
    y ‴ + 6 y ″ + 11 y ′ + 6 y = 0
  • c)
    y ‴ + 6 y ″ − 11 y ′ + 6 y = 0
  • d)
    y ‴ − 6 y ″ − 11 y ′ + 6 y = 0
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
y = A ex + B e2x + C e3xsatisfies the diferential equationa)y −...
Given Information:
The function y = Aex + Be2x + Ce3x satisfies the differential equation y'' - 6y' + 11y' - 6y = 0.

Explanation:

Step 1: Find y', y''
Given y = Aex + Be2x + Ce3x, we can find y' and y'' by taking the derivatives:
y' = Aex + 2Be2x + 3Ce3x
y'' = Aex + 4Be2x + 9Ce3x

Step 2: Substitute y, y', y'' into the differential equation
Now, substitute y, y', y'' into the given differential equation:
y'' - 6y' + 11y' - 6y = 0
(Aex + 4Be2x + 9Ce3x) - 6(Aex + 2Be2x + 3Ce3x) + 11(Aex + 2Be2x + 3Ce3x) - 6(Aex + Be2x + Ce3x) = 0

Step 3: Simplify the expression
After simplifying the above expression, we get:
(A - 6A + 11A - 6A)ex + (4B - 12B + 22B - 6B)e2x + (9C - 18C + 33C - 6C)e3x = 0
(-6A)e2x + (8B)e2x + (18C)e3x = 0

Step 4: Equate coefficients to zero
Now, equate the coefficients of ex, e2x, e3x to zero:
-6A = 0
8B - 12B = 0
18C = 0
From the above, we get A = 0, B = 0, C = 0.
Therefore, the function y = Aex + Be2x + Ce3x satisfies the differential equation y'' - 6y' + 11y' - 6y = 0, which corresponds to option A.
Explore Courses for JEE exam
Question Description
y = A ex + B e2x + C e3xsatisfies the diferential equationa)y − 6 y ″ + 11 y ′ − 6 y = 0b)y + 6 y ″ + 11 y ′ + 6 y = 0c)y + 6 y ″ − 11 y ′ + 6 y = 0d)y − 6 y ″ − 11 y ′ + 6 y = 0Correct answer is option 'A'. Can you explain this answer? for JEE 2025 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about y = A ex + B e2x + C e3xsatisfies the diferential equationa)y − 6 y ″ + 11 y ′ − 6 y = 0b)y + 6 y ″ + 11 y ′ + 6 y = 0c)y + 6 y ″ − 11 y ′ + 6 y = 0d)y − 6 y ″ − 11 y ′ + 6 y = 0Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for JEE 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for y = A ex + B e2x + C e3xsatisfies the diferential equationa)y − 6 y ″ + 11 y ′ − 6 y = 0b)y + 6 y ″ + 11 y ′ + 6 y = 0c)y + 6 y ″ − 11 y ′ + 6 y = 0d)y − 6 y ″ − 11 y ′ + 6 y = 0Correct answer is option 'A'. Can you explain this answer?.
Solutions for y = A ex + B e2x + C e3xsatisfies the diferential equationa)y − 6 y ″ + 11 y ′ − 6 y = 0b)y + 6 y ″ + 11 y ′ + 6 y = 0c)y + 6 y ″ − 11 y ′ + 6 y = 0d)y − 6 y ″ − 11 y ′ + 6 y = 0Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of y = A ex + B e2x + C e3xsatisfies the diferential equationa)y − 6 y ″ + 11 y ′ − 6 y = 0b)y + 6 y ″ + 11 y ′ + 6 y = 0c)y + 6 y ″ − 11 y ′ + 6 y = 0d)y − 6 y ″ − 11 y ′ + 6 y = 0Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of y = A ex + B e2x + C e3xsatisfies the diferential equationa)y − 6 y ″ + 11 y ′ − 6 y = 0b)y + 6 y ″ + 11 y ′ + 6 y = 0c)y + 6 y ″ − 11 y ′ + 6 y = 0d)y − 6 y ″ − 11 y ′ + 6 y = 0Correct answer is option 'A'. Can you explain this answer?, a detailed solution for y = A ex + B e2x + C e3xsatisfies the diferential equationa)y − 6 y ″ + 11 y ′ − 6 y = 0b)y + 6 y ″ + 11 y ′ + 6 y = 0c)y + 6 y ″ − 11 y ′ + 6 y = 0d)y − 6 y ″ − 11 y ′ + 6 y = 0Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of y = A ex + B e2x + C e3xsatisfies the diferential equationa)y − 6 y ″ + 11 y ′ − 6 y = 0b)y + 6 y ″ + 11 y ′ + 6 y = 0c)y + 6 y ″ − 11 y ′ + 6 y = 0d)y − 6 y ″ − 11 y ′ + 6 y = 0Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice y = A ex + B e2x + C e3xsatisfies the diferential equationa)y − 6 y ″ + 11 y ′ − 6 y = 0b)y + 6 y ″ + 11 y ′ + 6 y = 0c)y + 6 y ″ − 11 y ′ + 6 y = 0d)y − 6 y ″ − 11 y ′ + 6 y = 0Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev