JEE Exam  >  JEE Questions  >  The locus of a point P(α, β) movin... Start Learning for Free
The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 is
  • a)
    a circle
  • b)
    an ellipse
  • c)
    a hyperbola
  • d)
    a parabola
Correct answer is option 'C'. Can you explain this answer?
Most Upvoted Answer
The locus of a point P(α, β) moving under the condition tha...
1. **Understanding the problem**
The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 needs to be determined.
2. **Deriving the equation**
When the line y = αx + β is a tangent to the hyperbola, the point of tangency satisfies both the equation of the hyperbola and the equation of the line. By solving these two equations simultaneously, we can find the point of tangency.
3. **Finding the locus**
After obtaining the point of tangency, we can express it in terms of α and β. The locus of this point P(α, β) will give us the required equation.
4. **Analyzing the locus**
Upon analyzing the equation obtained for the locus, it can be seen that it represents a hyperbola. This is because the locus of a point moving under the given condition forms a hyperbolic curve.
5. **Conclusion**
Therefore, the correct answer is option 'C', a hyperbola. The locus of the point moving under the condition specified forms a hyperbola, as determined through the derivation and analysis of the problem.
Explore Courses for JEE exam
The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 isa)a circleb)an ellipsec)a hyperbolad)a parabolaCorrect answer is option 'C'. Can you explain this answer?
Question Description
The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 isa)a circleb)an ellipsec)a hyperbolad)a parabolaCorrect answer is option 'C'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 isa)a circleb)an ellipsec)a hyperbolad)a parabolaCorrect answer is option 'C'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 isa)a circleb)an ellipsec)a hyperbolad)a parabolaCorrect answer is option 'C'. Can you explain this answer?.
Solutions for The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 isa)a circleb)an ellipsec)a hyperbolad)a parabolaCorrect answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 isa)a circleb)an ellipsec)a hyperbolad)a parabolaCorrect answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 isa)a circleb)an ellipsec)a hyperbolad)a parabolaCorrect answer is option 'C'. Can you explain this answer?, a detailed solution for The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 isa)a circleb)an ellipsec)a hyperbolad)a parabolaCorrect answer is option 'C'. Can you explain this answer? has been provided alongside types of The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 isa)a circleb)an ellipsec)a hyperbolad)a parabolaCorrect answer is option 'C'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola (x2/a) - (y2/b2) = 1 isa)a circleb)an ellipsec)a hyperbolad)a parabolaCorrect answer is option 'C'. Can you explain this answer? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev