JEE Exam  >  JEE Questions  >  The area bounded by the curve y = sec x, the ... Start Learning for Free
The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 is
  • a)
    log(√2 + 1)
  • b)
    log(√2 - 1)
  • c)
    1/2 log 2
  • d)
    √2
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
The area bounded by the curve y = sec x, the x-axis and the lines x = ...
Explanation:

Understanding the problem:
Given the curve y = sec x, the x-axis, and the lines x = 0 and x = π/4, we need to find the area bounded by them.

Identifying the bounds:
The curve y = sec x intersects the x-axis at x = π/2. So, the area is bounded by x = 0, x = π/4, x = π/2, and the curve y = sec x.

Integration:
To find the area, we can integrate the function sec x with respect to x over the limits 0 to π/4.
∫ sec x dx = ln|sec x + tan x| evaluated from 0 to π/4
Plugging in the values, we get:
ln|sec(π/4) + tan(π/4)| - ln|sec(0) + tan(0)|
= ln|√2 + 1| - ln|1 + 0|
= ln|√2 + 1|

Final Answer:
Therefore, the area bounded by the curve y = sec x, the x-axis, and the lines x = 0 and x = π/4 is log(√2 + 1), which corresponds to option 'A'.
Explore Courses for JEE exam
The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 isa)log(√2 + 1)b)log(√2 - 1)c)1/2 log 2d)√2Correct answer is option 'A'. Can you explain this answer?
Question Description
The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 isa)log(√2 + 1)b)log(√2 - 1)c)1/2 log 2d)√2Correct answer is option 'A'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 isa)log(√2 + 1)b)log(√2 - 1)c)1/2 log 2d)√2Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 isa)log(√2 + 1)b)log(√2 - 1)c)1/2 log 2d)√2Correct answer is option 'A'. Can you explain this answer?.
Solutions for The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 isa)log(√2 + 1)b)log(√2 - 1)c)1/2 log 2d)√2Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 isa)log(√2 + 1)b)log(√2 - 1)c)1/2 log 2d)√2Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 isa)log(√2 + 1)b)log(√2 - 1)c)1/2 log 2d)√2Correct answer is option 'A'. Can you explain this answer?, a detailed solution for The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 isa)log(√2 + 1)b)log(√2 - 1)c)1/2 log 2d)√2Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 isa)log(√2 + 1)b)log(√2 - 1)c)1/2 log 2d)√2Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice The area bounded by the curve y = sec x, the x-axis and the lines x = 0 and x = π/4 isa)log(√2 + 1)b)log(√2 - 1)c)1/2 log 2d)√2Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev